Компенсаційний метод вимірювання ТЕРС термопари. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Компенсаційний метод вимірювання ТЕРС термопари.



Для забезпечення вимірювання температури з високою точністю використовуються схеми приладів, які побудовані за схемами компенсаційного типу (потенціометричні). Компенсаційний метод грунтується на зрівноважені (компенсації) вимірюваної ТЕРС термопари рівною по величині, але оберненою по знаку відомою різницею потенціалів, яка утворюється за допомогою допоміжного джерела струму.

Підвищення точності досягається за рахунок вимірювання максимального значення ТЕРС в режимі холостого ходу, коли струм в ланцюгу, утвореному термопарою, схемою компенсації та вимірювальним приладом (гальванометром, електронним підсилювачем) відсутній.

Найпростіша схема компенсації (рис.4) складається із реохорда R , що

під’єднаний до зразкового джерела струму Е, термопари, що вмикається так, щоб її ТЕРС була направлена на зустріч падінню напруги на відповідній частині реохорду R від зразкового джерела Е, та вимірювального приладу НП (нуль-приладу). При цьому завжди можливо знайти таке положення повзунка реохорда D, при якому буде рівність Е(tх,to)=UAD, а струм через вторинний прилад (НП) буде відсутній. При нульових показах НП знімають значення ТЕРС по шкалі реохорда, яку, як правило, градуюють в одиницях температури.

Найбільш розповсюджені автоматичні потенціометри з компенсаційною мостовою схемою (рис. 5), яка використовується одночасно, як для компенсації зміни температури вільних кінців (один із опорів мостової схем виготовляють із міді або нікелю і його температура дорівнює температурі холодного спаю термопари), так і для безпосереднього зрівноваження термоелектрорушійної сили термопари напругою вимірювальної діагоналі мосту. Міст постійно розбалансовується за допомогою реохорда ( каліброваного змінного опору) R , що приводить до зміни напруги Ubd у вимірювальній діагоналі. Причому зрівноважування відбувається автоматично за допомогою безперервно діючого слідкуючого електронного пристрою ЕП, вхід якого ΔU використовується як показник рівноваги, а вихід - керує реверсивним електродвигуном. Останній за допомогою кінематичної схеми переміщує повзунок реохорда до тих пір поки напруга ΔU= Еx - Ubd (різниця між ТЕРС термопари та напругою у вимірювальній діагоналі) не буде дорівнювати нулю (повне зрівноважування). Схема автоматичної компенсації зміни температури холодного спаю термопари діє по аналогії із схемою на рис.3.

 

Рис. 4. Компенсаційна схема Рис.5. Автоматичний потенціометр

вимірювання ТЕРС термопари

 

На шкалі кожного типу потенціометра вказується: 1) клас точності, що за

лежить від типу потенціометра [в межах 0,5(в основному); 1,0 та 1,5, а для ти-

пу КСП4 - клас 0.25] та 2) - тип термопари, в комплекті з якою він атестований.

 

3.2.Термоелектричний перетворювач “Ni - Cr/Ni ” з вимірювальним перетворювачем “SITRANS TK/TK – H”

Загальний вигляд термопари приведений на рис.6,а. На рис. 6,б показаний вимірювальний перетворювач “ Sitrans TK/TK – H ”, а на рис. 6,в - його розміщення корпусі.

а) б) в)

Рис. 6. Загальний вигляд термопари та перетворювача Sitrans TK/TK– H.

На рис. 7 приведена структурна схемаперетворювача Sitrans TK/TK– H.

Вимірювальний сигнал, що надходить від ПВП (термопара ТС або RTD -

платиновий термометр опору), підсилюється вхідним контуром і надходить у

аналого-цифровий перетворювач 1, де перетворюється у цифровий код. Через гальванічний розділювач 2 цифровий сигнал надходить у мікропроцесорний контролер 3, де відбувається його лінеаризація та коригування у

відповідності із необхідним діапазоном вимірювання. Задання параметрів конфігурування (тип ПВП, діапазон вимірювання) для перетворювача Sitrans TK/TK– H виконується із комп’ютера 6. Для цього використовується з’єднувальний модуль HART- модем, який підтримує програмне забезпечення SIPROM за схемою в два проводи. Керування може здійснюватись і за допомогою спеціального пульта ручного керування. Сигнали, що необхідні для комунікації по HART- протоколу, наклаються на вихідний струмовий сигнал способом частотного перемикання (FSK, Frequency Shift Keying).

 

Рис.7. Структурна схема “ Sitrans TK/TK – H ”.

 

Дані про вимірювальний перетворювач, а також завдання на його конфігурування зберігаються у енергонезалежній пам’яті перетворювача. Типи термопар, що можуть бути використані, та їхні метрологічні характеристики:

 

Манометричні термометри

Принцип дії манометричних термометрів грунтується на механічному переміщенні пругкого чутливого елемента в замкненній герметичній системі від зміни або тиску газу, або зміни об’єму рідини, або зміни тиску насиченої пари в залежності від вимірюваної температури.

Манометричний термометр (рис.8) складається із: термобалона 1, який

розміщується в об’єкті вимірювання; капілярної трубки 3 довжиною до 60 м і

внутрішнім діаметром 0,1-0,5 мм з захисним метало рукавом 2 та манометричного приладу, який складається із чутливого елементу в вигляді трубчатої пружини 4 овального перерізу (одно або багато виткової, остання може бути спіралевидної чи гелікоїдальної форми, а замість трубчатої пружини може використовуватись і сильфон); передавального механізму, який в свою чергу складається з біметалевого термокомпенсуючого повідка 6, зубчатого сектору та шестерні (на рис. не показані), на якій закріплена стрілка 5 та шкали

Межі вимірювання температури для різних наповнювачів:

Термометри Термометрична речовина Межі температур, °С
газові азот, гелій, водень -260...+600
рідинні ртуть ксилол, метиловий спирт силіконова рідина -40...+600 -40...+180 -150...+300
конденсаційні хлорметил ацетон бензол -20...+150 -60...+200 -100...+250

Під впливом температури тиск термометричної речовини в термобалоні 1 збільшується і передається по капіляру 3, монометричній пружині 4, яка під дією тиску розкручується і її вільний кінець через повідок 6 і кінематичну схему переміщує стрілку 5 по шкалі чи перо самописця.

Термобалон 1 виготовляють із корозієстійкої сталі, а капіляр 3 - із стальної чи мідної трубки внутрішнім діаметром в межах 0,15- 0,5 мм..

Довжина капіляру штатна: 1; 1,6; 2,5; 4; 6; 10; 16; 25; і 40(60)м і від неї залежить основна похибка вимірювання. Чим менше довжина капіляра і менший діапазон вимірювання, тим менше основна похибка. Похибка вимірювань залежить також від співвідношення об’єму термобалону та неробочого об’єму манометричної системи.

Залежно від термометричної речовини термометри бувають газові, рідинні

та парорідинні для різних меж вимірювання.

Принцип дії газових манометричних термометрів грунтується на тепловому розширенні газів і для них залежність тиску в термосистемі від температури підпорядкована закону Шарля:

Pt = P0*[1 + a*(t – t0)], (3)

де P0– початковий тиск в термосистемі при температурі заповнення t0,

[МПа]; a=1/273,15[1/К] - температурний коефіцієнт розширення газу.

P0 вибирають в межах (3...10) МПа, щоб зменшити вплив атмосферного тиску на манометричну систему.

Газові термометри використовуються також для вимірювання дуже низьких

температур, які відповідають температурам конденсації газу наповнювача.

Наприклад, при заповненні термосистеми азотом, нижня межа вимірювання

температури складає: -195°С, а гелієм- (-269°С).

Надлишковий об’єм DV рідини, який виштовхується із термобалону рідинних термометрів із зміною його температури:

DV = (b - 3a)*(t – t0)*V0, ( 4)

де b і a - коефіцієнти об’ємного розширення відповідно термометричної рідини та термобалону, [1/°С]; t0 – температура при якій виконано заповнення термосистеми (20°С) об’ємом V0, [м3].

Рідинні термочутливі системи розвивають значні зусилля і їхня робота практично не залежить від атмосферного тиску, що дозволяє використовувати їх також в термореле з потужними контактами на розмикання.

Випускаються газові та рідинні термометри типу ТГС та ТЖС – показувальні і самописні. Із наведених формул (3) та (4) видно, що шкали газових і рідинних термометрів лінійні.

Принцип дії конденсаційних (або парорідинних) манометричних термометрів грунтується на залежності тиску насиченої пари від температури. Особливість їхньої роботи в тому, що в робочому діапазоні температур в манометричній системі наповнювач знаходиться завжди в двох фазах: рідкій та пароподібній. Тиск в такій системі визначається температурою границі розподілу рідина – пара і вони розрізняються з парорідинним та паровим наповненням.

Парорідинне наповнення – кількість рідини в системі складає 50¸60 %

об’єму, причому об’єм термобалону повинен складати не менше 50% всього

об’єму. Це дає те, що границя розподілу, рідина – пара завжди знаходиться в

термобалоні, не залежно від температур окремих частин і положення термобалону. Переваги такого заповнення: 1) можливість роботи, в умовах, коли температура термобалона вища або нижча за температуру інших частин термосистеми; 2) швидка реакція

на зміну температури. Недолік – необмежене зростання тиску в системі з ростом

Рис.8температури. МТ (рис.8) складається із зануреного у вимірюване середовище термобалона 1, капілярної трубки 3 завдовжки до 60 м, захищеної металевим рукавом 2, і вимірювальної трубчастої пружини 4, яка за допомогою біметалевої тяги 6 переміщує стрілку 5 відлікового пристрою.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 775; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.4.181 (0.016 с.)