Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Знакочередующиеся ряды. Признак ЛейбницаСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Определение 1. Числовой ряд , Для установления сходимости таких рядов существует достаточный признак сходимости, называемый признаком Лейбница. Теорема 1 (признак Лейбница). Пусть числовой ряд удовлетворяет условиям: Доказательство. 1) Сначала рассмотрим частичную сумму чётного порядка и запишем её в виде: . В силу условия 2) теоремы 1 все выражения в скобках положительны, тогда сумма и последовательность монотонно возрастает: . Теперь запишем эту сумму иначе: . 2) Рассмотрим частичную сумму нечётного порядка , которая положительна. Можно показать, что последовательность монотонно возрастает, так как монотонно возрастает последовательность и . Запишем выражение для в виде: , так как все выражения в скобках положительны, то . По условию 3) теоремы 1 , тогда , откуда . Итак, при всех n (чётных или нечётных), , следовательно, исходный ряд сходится. Теорема доказана. Замечание 1. Признак Лейбница можно также применять к рядам, для которых условия теоремы выполняются с некоторого номера N. Пример 1. Исследовать на сходимость ряд . Решение. Обозначим . К данному ряду применим признак Лейбница. Проверим выполнение условий теоремы 1: условие 1) ряд знакочередующийся ; условие 2) выполнено: ; условие 3) также выполнено: . Следовательно, по признаку Лейбница данный ряд сходится, причем его сумма . Ответ: ряд сходится. 3.2. Знакопеременные ряды. Абсолютная и условная сходимость. Числовой ряд , члены которого имеют произвольные знаки (+), (−), называется знакопеременным рядом. Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд − знакопеременный, но не являющийся знакочередующимся рядом. Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (−) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот. Определение 1. Если числовой ряд сходится и его сумма равна S, Рассмотрим сходящийся знакочередующийся ряд как частный случай знакопеременного ряда , где . Запишем его в виде , тогда по признаку Лейбница ; так как , то , т.е. остаток сходящегося ряда стремится к 0. Для знакопеременных рядов вводятся понятия абсолютной и условной сходимости. Определение 2. Ряд называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов . Определение 3. Если числовой ряд сходится, а ряд , составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся. Теорема 2 (достаточный признак сходимости знакопеременных рядов). Знакопеременный ряд сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов . Доказательство. Обозначим через частичную сумму ряда : , а через − частичную сумму ряда : . Обозначим через сумму всех положительных членов, а через сумму абсолютных величин всех отрицательных членов, входящих в . Очевидно, что . По условию теоремы ряд сходится, тогда существует , и так как последовательность − монотонно возрастающая и неотрицательная, то . Очевидно, что , тогда последовательности и являются монотонно возрастающими и ограниченными, причем их пределы равны и . Тогда . Значит, исходный знакопеременный ряд сходится и сходится абсолютно. Теорема доказана. Замечание. Теорема 2 даёт только достаточное условие сходимости знакопеременных рядов. Обратная теорема неверна, т.е. если знакопеременный ряд сходится, то не обязательно, что сходится ряд, составленный из модулей (он может быть как сходящимся, так и расходящимся). Например, ряд сходится по признаку Лейбница (см. пример 1 данной лекции), а ряд, составленный из абсолютных величин его членов, (гармонический ряд) расходится. Пример 2. Исследовать на условную и абсолютную сходимость ряд . Решение. Данный ряд является знакопеременным, общий член которого обозначим: . Составим ряд из абсолютных величин и применим к нему признак Даламбера. Составим предел , где , . Проведя преобразования, получаем . Таким образом, ряд сходится, а значит, исходный знакопеременный ряд сходится абсолютно. Пример 3. Исследовать на абсолютную и условную сходимость ряд . Решение. А) Исследуем ряд на абсолютную сходимость. Обозначим и составим ряд из абсолютных величин . Получаем ряд с положительными членами, к которому применяем предельный признак сравнения рядов (теорема 2, лекция 2, разд. 2.2). Для сравнения с рядом рассмотрим ряд, который имеет вид . Этот ряд является рядом Дирихле с показателем , т.е. он расходится. Составим и вычислим следующий предел . Так как предел существует, не равен 0 и не равен ∞, то оба ряда и ведут себя одинаково. Таким образом, ряд расходится, а значит, исходный ряд не является абсолютно сходящимся. Б) Далее исследуем исходный ряд на условную сходимость. Для этого проверим выполнение условий признака Лейбница (теорема 1, разд. 3.1). Условие 1): , где , т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию , определенную при (функция такова, что при имеем ). Для исследования этой функции на монотонность найдём её производную: . Эта производная при . Следовательно, функция монотонно убывает при указанных значениях х. Полагая , получаем , где . Это означает, чтоусловие 2) выполнено. Для проверки условия 3) находим предел общего члена : , т.е. третье условие выполняется. Таким образом, для исходного ряда выполнены все условия признака Лейбница, т.е. он сходится. Ответ: ряд условно сходится.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 820; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.126.69 (0.007 с.) |