Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Радикальный признак Коши. Интегральный признак Коши. Ряд Дирихле.↑ ⇐ ПредыдущаяСтр 7 из 7 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Теорема 1.6 (радикальный признак Коши). Пусть дан ряд (1.1) с положительными членами и существует конечный или бесконечный предел . Тогда: 1) при ряд сходится; 2) при ряд расходится. При радикальный признак Коши не дает ответа на вопрос о сходимости или расходимости ряда. В этом случае сходимость ряда исследуется с помощью других признаков. Теорема 1.7 (интегральный признак Коши). Пусть дан ряд , члены которого являются значениями непрерывной положительной функции при целых значениях аргумента : , и пусть монотонно убывает на промежутке . Тогда ряд сходится, если сходится несобственный интеграл , и расходится, если несобственный интеграл расходится. Надо отметить, что вместо интеграла можно брать интеграл , где . Отбрасывание первых членов ряда, как известно, не влияет на сходимость (расходимость) ряда. Пример 1.11. Исследовать на сходимость ряд , (1.10) где - действительное число, ряд называется обобщенным гармоническим рядом или рядом Дирихле. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов. Знакочередующимся рядом называется ряд вида , (2.1) где для всех (т.е. ряд, положительные и отрицательные члены которого следуют друг за другом поочередно).
Для знакочередующихся рядов имеет место достаточный признак сходимости, установленный в 1714 г. Лейбницем в письме к И.Бернулли. Теорема 2.1 (признак Лейбница). Знакочередующийся ряд (2.1) сходится, если 1) последовательность абсолютных величин ряда монотонно убывает, т.е. ; 2) общий член ряда стремится к нулю, т.е. . При этом сумма ряда (2.1) удовлетворяет неравенствам . Знакопеременный ряд называется абсолютно сходящимся, если ряд, составленный из модулей его членов, сходится. Знакопеременный ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится. 32. Функциональный ряд. Точка сходимости. Область сходимости функционального ряда. -ая частична сумма и -ый остаток функционального ряда. Пусть функции определены в области . Тогда выражение вида (3.1) называется функциональным рядом.
Придавая определенные значения , получаем числовой ряд , который может быть как сходящимся, так и расходящимся. Определение 3.2. Если числовой ряд сходится при , то ряд называется сходящимся в точке , а сама точка называется точкой сходимости ряда. Множество значений , при которых ряд (7.1) сходится, называется областью сходимости функционального ряда.
Область сходимости функционального ряда обозначим . Как правило, область не совпадает с областью , а является ее подмножеством, т.е. .
|
|||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 945; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.178.220 (0.01 с.) |