Теорема гипотез и Байесовские подходы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теорема гипотез и Байесовские подходы

Поиск

Теорема гипотез дает возможность пересматривать принятое первоначально решение о вероятностях появления интересующих нас событий в зависимости от поступившей дополнительно информации. Байесовские методы позволяют включать ранее известные знания, убеждения и информацию, помимо тех, что содержатся в наблюдаемых данных, в процесс вывода. Сюда могут включаться данные из предыдущих исследований, известные характеристики используемой модели, и другие объективные или субъективные источники данных.

Формула Байеса – одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие (гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны.

Вероятности, характеризующие суждение человека о состояниях внешнего мира и будущих событиях (иначе говоря, первоначальные вероятности гипотез) до получения дополнительной информации, называются априорными.

Вероятности, пересмотренные после получения дополнительной информации, называются апостериорными.

Априорность и апостериорность относятся к конкретной вероятности и являются понятиями относительными. Апостериорные вероятности по отношению к предшествующему наблюдению могут выступать в роли априорных по отношению к последующему наблюдению.

Формула Байеса записывается следующим образом:

где P (A) — априорная вероятность гипотезы А, — вероятность гипотезы A при наступлении события B (апостериорная вероятность), — вероятность наступления события B при истинности гипотезы A, P (B) — вероятность наступления события B.

Отношение правдоподобия – это отношение двух вероятностей получения определенного результата испытания. Оно количественно отражает влияние результата испытания на априорную вероятность:

Апостериорная вероятность = априорная вероятность x отношение правдоподобия

Современные психологи считают оптимальной моделью формирования врачом диагноза именно формулы Байеса (основную и ее модификации). Предварительный диагноз является гипотезой, сформулированной на основе априорной вероятности. Применение дополнительных методов обследования, дающих возможность получить дополнительную информацию, позволяет установить окончательный клинический диагноз с позиции апостериорной вероятности.

Многочисленные исследования, посвященные изучению процесса формирования диагноза, позволяют утверждать, что врачи могут не производить коррекцию первоначальной оценки вероятности, как правило, недооценивая последующую информацию.

Последнее качество, свойственное большинству людей, принято называть познавательным консерватизмом.

Необходимо всегда помнить, что на основе неточной или ошибочной информации нельзя получить точное и правильное решение. Именно поэтому математические методы применяются лишь в тех областях науки и практики, в которых накоплен достаточный опыт и имеется необходимый объем объективной информации.

Пример решения задачи с использованием теории вероятности

Рассмотрим простой и наглядный пример для схемы случаев. Именно для этой схемы можно точно рассчитать вероятность события, чем и объясняется столь частое к ней обращение.

Пусть имеются 3 внешне одинаковые урны, содержащие черные и белые шары. В первой урне находятся 2 белых и 1 черный шар, во второй — 3 белых и 1 черный, в третьей — 2 белых и 2 черных. Рассмотрим событие А, заключающееся в выборе белого шара из наугад выбранной урны.

В этом примере гипотезы H1, Н2, и Н3 заключаются в выборе первой, второй и третьей урны, соответственно. Поскольку все урны одинаковы, гипотезы равновозможны, отсюда вероятности выбора любой из урн одинаковы и равны:

Условные вероятности события А при каждой из гипотез определяются отношением числа белых шаров к общему числу шаров в каждой урне

Вероятность события А при наугад выбранной урне определится по формуле полной вероятности:

Схема испытаний Бернулли

Со схемой испытаний Бернулли связано установление важных закономерностей теории вероятностей как математической науки, относящихся к сумме независимых случайных величин и представляющих закон больших чисел. Физическим содержанием закона больших чисел является устойчивость некоторых средних в массовых случайных явлениях. В узком смысле под законом больших чисел в теории вероятностей понимается ряд математических теорем, устанавливающих факт приближения средних характеристик большого числа испытаний к некоторым определенным постоянным. Важные теоремы, составляющие закон больших чисел, впервые были выведены для схемы испытаний Бернулли.

Теорема Чебышева. Среднее арифметическое наблюдаемых значений случайной величины при достаточно большом числе испытаний приближается к ее математическому ожиданию.

Теорема Бернулли. Частота случайного события при достаточно большом числе независимых испытаний в неизменных условиях приближается к вероятности его появления в отдельном испытании.

Теорема Пуассона. Частота случайного события при достаточно большом числе независимых испытаний приближается к среднему арифметическому вероятностей его проявления в отдельных испытаниях.

Центральная предельная теорема. Закон распределения суммы достаточно большого числа слагаемых, каждое из которых в отдельности сравнительно мало влияет на сумму, приближается к нормальному закону распределения.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 412; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.156.26 (0.007 с.)