Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема: «Описательная статистика. Показатели разнообразия признака в совокупности»

Поиск

Основными критериями разнообразия признака в статистической совокупности являются: лимит, амплитуда, среднее квадратическое отклонение, коэффициент осцилляции и коэффициент вариации. На предыдущем занятии обсуждалось, что средние величины дают лишь обобщающую характеристику изучаемого признака в совокупности и не учитывают значения отдельных его вариант: минимальное и максимальное значения, выше среднего, ниже среднего и т.д.

Пример. Средние величины двух разных числовых последовательностей: -100; -20; 100; 20 и 0,1; -0,2; 0,1 абсолютно одинаковы и равны О. Однако, диапазоны разброса данных этих последовательностей относительного среднего значения сильно различны.

Определение перечисленных критериев разнообразия признака прежде всего осуществляется с учетом его значения у отдельных элементов статистической совокупности.

Показатели измерения вариации признака бывают абсолютные и относительные. К абсолютным показателям вариации относят: размах вариации, лимит, среднее квадратическое отклонение, дисперсию. Коэффициент вариации и коэффициент осцилляции относятся к относительным показателям вариации.

Лимит (lim)– это критерий, который определяется крайними значениями вариант в вариационном ряду. Другими словами, данный критерий ограничивается минимальной и максимальной величинами признака:

Амплитуда (Am) или размах вариации – это разность крайних вариант. Расчет данного критерия осуществляется путем вычитания из максимального значения признака его минимального значения, что позволяет оценить степень разброса вариант:

Недостатком лимита и амплитуды как критериев вариабельности является то, что они полностью зависят от крайних значений признака в вариационном ряду. При этом не учитываются колебания значений признака внутри ряда.

 

Наиболее полную характеристику разнообразия признака в статистической совокупности дает среднее квадратическое отклонение (сигма), которое является общей мерой отклонения вариант от своей средней величины. Среднее квадратическое отклонение часто называют также стандартным отклонением.

В основе среднего квадратического отклонения лежит сопоставление каждой варианты со средней арифметической данной совокупности. Так как в совокупности всегда будут варианты как меньше, так и больше, чем она, то сумма отклонений , имеющих знак " ", будет погашаться суммой отклонений, имеющих знак " ", т.е. сумма всех отклонений равна нулю. Для того, чтобы избежать влияния знаков разностей берут отклонения вариант от среднего арифметического в квадрате, т.е. . Сумма квадратов отклонений не равняется нулю. Чтобы получить коэффициент, способный измерить изменчивость, берут среднее от суммы квадратов – это величина носит название дисперсии:

По смыслу, дисперсия – это средний квадрат отклонений индивидуальных значений признака от его средней величины. Дисперсия квадрат среднего квадратического отклонения .

Дисперсия является размерной величиной (именованной). Так, если варианты числового ряда выражены в метрах, то дисперсия дает квадратные метры; если варианты выражены в килограммах, то дисперсия дает квадрат этой меры (кг2), и т.д.

Среднее квадратическое отклонение – квадратный корень из дисперсии:

В том случае, если число элементов совокупности , то при расчете дисперсии и среднего квадратического отклонения в знаменателе дроби вместо необходимо ставить .

Расчет среднего квадратического отклонения можно разбить на шесть этапов, которые необходимо осуществить в определенной последовательности:

1. определить среднюю арифметическую M имеющейся совокупности

2. рассчитать отклонение каждой варианты от средней величины:

3. каждое отклонение возвести в квадрат: (Для получения обобщающей характеристики числового ряда использовать сумму отклонений от среднего нельзя. Это связано с тем, что сумма всех отрицательных и положительных отклонений от среднего всегда равна нулю.)

4. посчитать сумму всех

5. разделить получившуюся сумму на число элементов совокупности n

6. из полученного результата извлечь квадратный корень

Применение среднеквадратического отклонения:

а) для суждения о колеблемости вариационных рядов и сравнительной оценки типичности (представительности) средних арифметических величин. Это необходимо в дифференциальной диагностике при определении устойчивости признаков.

б) для реконструкции вариационного ряда, т.е. восстановления его частотной характеристики на основе правила «трех сигм». В интервале (М±3σ) находится 99,7% всех вариант ряда, в интервале (М±2σ) — 95,5% и в интервале (М±1σ) — 68,3% вариант ряда (рис.1).

в) для выявления «выскакивающих» вариант

г) для определения параметров нормы и патологии с помощью сигмальных оценок

д) для расчета коэффициента вариации

е) для расчета средней ошибки средней арифметической величины.

 

Для характеристики любой генеральной совокупности, имеющей нормальный тип распределения, достаточно знать два параметра: среднюю арифметическую и среднее квадратическое отклонение.

Рисунок 1. Правило «трех сигм»

Пример.

В педиатрии среднеквадратическое отклонение используется для оценки физического развития детей путем сравнения данных конкретного ребенка с соответствующими стандартными показателями. За стандарт принимаются средние арифметические показатели физического развития здоровых детей. Сравнение показателей со стандартами проводят по специальным таблицам, в которых стандарты приводятся вместе с соответствующими им сигмальными шкалами. Считается, что если показатель физического развития ребенка находится в пределах стандарт (среднее арифметическое) ±σ, то физическое развитие ребенка (по этому показателю) соответствует норме. Если показатель находится в пределах стандарт ±2σ, то имеется незначительное отклонение от нормы. Если показатель выходит за эти границы, то физическое развитие ребенка резко отличается от нормы (возможна патология).

Кроме показателей вариации, выраженных в абсолютных величинах, в статистическом исследовании используются показатели вариации, выраженные в относительных величинах. Коэффициент осцилляции -это отношение размаха вариации к средней величине признака. Коэффициент вариации - это отношение среднего квадратического отклонения к средней величине признака. Как правило, эти величины выражаются в процентах.

Формулы расчета относительных показателей вариации:

Из приведенных формул видно, что чем больше коэффициент V приближен к нулю, тем меньше вариация значений признака. Чем больше V, тем более изменчив признак.

В статистической практике наиболее часто применяется коэффициент вариации. Он используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). Арифметически отношение σ и средней арифметической нивелирует влияние абсолютной величины этих характеристик, а процентное соотношение делает коэффициент вариации величиной безразмерной (неименованной).

Полученное значение коэффициента вариации оценивается в соответствии с ориентировочными градациями степени разнообразия признака:

- слабое — до 10 %

- среднее — 10 - 20 %

- сильное — более 20 %

Использование коэффициента вариации целесообразно в случаях, когда приходится сравнивать признаки разные по своей величине и размерности.

Отличие коэффициента вариации от других критериев разброса наглядно демонстрирует пример.

Таблица 1

Состав работников промышленного предприятия

Учетный признак Среднее арифметическое Среднее квадратическое отклонение σ Коэффициент вариации, %
Стаж работы (лет) 8,7 2,8 32,1
Возраст (лет) 37,2 4,1 11,0
Образование (классов) 9,2 1,1 11,9

На основании приведенных в примере статистических характеристик можно сделать вывод об относительной однородности возрастного состава и образовательного уровня работников предприятия при низкой профессиональной устойчивости обследованного контингента. Нетрудно заметить, что попытка судить об этих социальных тенденциях по среднему квадратическому отклонению привела бы к ошибочному заключению, а попытка сравнения учетных признаков «стаж работы» и «возраст» с учетным признаком «образование» вообще была бы некорректной из-за разнородности этих признаков.

Медиана и перцентили

Для порядковых (ранговых) распределений, где критерием середины ряда является медиана, среднеквадратическое отклонение и дисперсия не могут служить характеристиками рассеяния вариант.

То же свойственно и для открытых вариационных рядов. Указанное обстоятельство связано с тем, что отклонения, по которым вычисляются дисперсия и σ, отсчитываются от среднего арифметического, которое не вычисляется в открытых вариационных рядах и в рядах распределений качественных признаков. Поэтому для сжатого описания распределений используется другой параметр разброса – квантиль (синоним - «nерцентиль»), пригодный для описания качественных и количественных признаков при любой форме их распределения. Этот параметр может использоваться и для перевода количественных признаков в качественные. В этом случае такие оценки присваиваются в зависимости от того, какому по порядку квантилю соответствует та или иная конкретная варианта.

В практике медико-биологических исследований наиболее часто используются следующие квантили:

– медиана;

, – квартили (четверти), где – нижний квартиль, верхний квартиль.

Квантили делят область возможных изменений вариант в вариационном ряду на определенные интервалы. Медиана (квантиль ) – это варианта, которая находится в середине вариационного ряда и делит этот ряд пополам, на две равные части (0,5 и 0,5). Квартиль делит ряд на четыре части: первая часть (нижний квартиль ) – это варианта, отделяющая варианты, числовые значения которых не превышают 25% максимально возможного в данном ряду, квартиль отделяет варианты с числовым значением до 50% от максимально возможного. Верхний квартиль () отделяет варианты величиной до 75% от максимально возможных значений.

В случае асимметричности распределения переменной относительно среднего арифметического для его характеристики используются медиана и квартили. В этом случае используется следующая форма отображения средней величины – Ме (; ). Например, исследуемый признак – «срок, в котором ребенок начал самостоятельно ходить» - в исследуемой группе имеет ассиметричное распределение. При этом, нижнему квартилю () соответствует срок начала ходьбы – 9,5 месяцев, медиане – 11 месяцев, верхнему квартилю () – 12 месяцев. Соответственно, характеристика средней тенденции указанного признака будет представлена, как 11 (9,5; 12) месяцев.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 807; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.19.89 (0.008 с.)