Токи смещения. Теорема о циркуляции магнитного поля переменных токов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Токи смещения. Теорема о циркуляции магнитного поля переменных токов.



Ток смещения или абсорбционный ток — величина, прямо пропорциональная скорости изменения электрической индукции.

Если переменное магнитное поле создает поле электрическое, то разумно предположить существование и обратного процесса: изменяющееся электрическое поле порождает поле магнитное. Такое явление действительно существует и носит не совсем обычное название ток смещения

По Максвеллу ток проводимости замыкается в конденсаторе током смещения

Точная формулировка

В вакууме, а также в любом веществе, в котором можно пренебречь поляризацией либо скоростью её изменения, током смещения (с точностью до универсального постоянного коэффициента) называется[3] поток вектора быстроты изменения электрического поля через некоторую поверхность[4] :

(СИ)

(СГС)

В диэлектриках (и во всех веществах, где нельзя пренебречь изменением поляризации) используется следующее определение:

(СИ)

(СГС),

где D — вектор электрической индукции (исторически вектор D назывался электрическим смещением, отсюда и название «ток смещения»)

Соответственно, плотностью тока смещения в вакууме называется величина

(СИ)

(СГС)

а в диэлектриках — величина

(СИ)

(СГС)

Теорема о циркуляции магнитного поля

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

Теорема о циркуляции утверждает, что циркуляция вектора В магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0на сумму всех токов, пронизывающих контур:

Циркуляцией вектора магнитной индукции В по заданному контуру называется интеграл

 

Система уравнений Максвелла.

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца.

Дифференциальная форма

Уравнения Максвелла представляют собой в векторной записи систему из четырёх уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных) линейным дифференциальным уравнениям в частных производных первого порядка для 12 компонент четырёх векторных функций ():

 

Название СГС СИ Примерное словесное выражение
Закон Гаусса Электрический заряд является источником электрической индукции.
Закон Гаусса для магнитного поля Не существует магнитных зарядов
Закон индукции Фарадея Изменение магнитной индукции порождает вихревое электрическое поле.
Теорема о циркуляции магнитного поля Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

 

Жирным шрифтом в дальнейшем обозначаются векторные величины, курсивом — скалярные.

Введённые обозначения:

· — плотность стороннего электрического заряда (в единицах СИ — Кл/м³);

· — плотность электрического тока (плотность тока проводимости) (в единицах СИ — А/м²); в простейшем случае — случае тока, порождаемого одним типом носителей заряда, она выражается просто как , где — (средняя) скорость движения этих носителей в окрестности данной точки, — плотность заряда этого типа носителей (она в общем случае не совпадает с )[29]; в общем случае это выражение надо усреднить по разным типам носителей;

· — скорость света в вакууме (299 792 458 м/с);

· — напряжённость электрического поля (в единицах СИ — В/м);

· — напряжённость магнитного поля (в единицах СИ — А/м);

· — электрическая индукция (в единицах СИ — Кл/м²);

· — магнитная индукция (в единицах СИ — Тл = Вб/м² = кг•с−2•А−1);

· — дифференциальный оператор набла, при этом:

означает ротор вектора,

означает дивергенцию вектора.

Интегральная форма

При помощи формулы Остроградского — Гаусса и теоремы Стокса дифференциальным уравнениям Максвелла можно придать форму интегральных уравнений:

Название СГС СИ Примерное словесное выражение
Закон Гаусса Поток электрической индукции через замкнутую поверхность пропорционален величине свободного заряда, находящегося в объёме , который окружает поверхность .
Закон Гаусса для магнитного поля Поток магнитной индукции через замкнутую поверхность равен нулю (магнитные заряды не существуют).
Закон индукции Фарадея Изменение потока магнитной индукции, проходящего через незамкнутую поверхность , взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре , который является границей поверхности .
Теорема о циркуляции магнитного поля Полный электрический ток свободных зарядов и изменение потока электрической индукции через незамкнутую поверхность пропорциональны циркуляции магнитного поля на замкнутом контуре , который является границей поверхности .

Введённые обозначения:

· — двумерная замкнутая в случае теоремы Гаусса поверхность, ограничивающая объём , и открытая поверхность в случае законов Фарадея и Ампера — Максвелла (её границей является замкнутый контур ).

· — электрический заряд, заключённый в объёме , ограниченном поверхностью (в единицах СИ — Кл);

· — электрический ток, проходящий через поверхность (в единицах СИ — А).

При интегрировании по замкнутой поверхности вектор элемента площади направлен из объёма наружу. Ориентация при интегрировании по незамкнутой поверхности определяется направлением правого винта, «вкручивающегося» при повороте в направлении обхода контурного интеграла по .



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 1401; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.39.74 (0.007 с.)