Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Магнитное поле. Индукция и напряженность магнитного поля. Закон ампера.

Проводники с током в магнитном поле. Взаимодействие параллельных токов.

Если в поле (или электромагнита) поместить проводник с током, который создает свое собственное магнитное поле, то оба магнитных поля, взаимодействуя между собой, создадут силу, которая стремиться вытолкнуть проводник из поля. Как видно на рисунке №1 А, магнитные силовые линии поля и проводника слева от него совпадают по направлению и их полностью здесь больше, чем справа от проводника где магнитные силовые линии проводника идут навстречу линиям поля и ослабляют одна другую. Проводник выталкивается из магнитного поля вправо. Если изменить направление тока в проводнике (рисунок №1 Б), то направление силы также изменится. Сила с которой поле действует на проводник,

Для определения направления силы, действующей в магнитном поле, применяют правило левой руки: если расположить левую руку так, чтобы магнитные линии входили в ладонь, а вытянутые четыре пальца совпадали с направлением тока проводнике, то большой палец укажет направление действия силы, приложенной к проводнику.

Два параллельных тока одинакового направления притягиваются друг к другу с силой, равной

Если токи имеют противоположные направления, то, используя правило левой руки, определим, что между ними действует сила отталкивания, определяемая выражением.

Движение заряженной частицы в магнитном поле. Сила Лоренца.

Формула силы Лоренца дает возможность найти ряд закономерностей движения заряженных частиц в магнитном поле. Зная направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле можно найти знак заряда частиц, которые движутся в магнитных полях.

Для вывода общих закономерностей будем полагать, что магнитное поле однородно и на частицы не действуют электрические поля. Если заряженная частица в магнитном поле движется со скоростью v вдоль линий магнитной индукции, то угол α между векторами v и В равен 0 или π. Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.

В случае, если заряженная частица движется в магнитном поле со скоростью v, которая перпендикулярна вектору В, то сила Лоренца F =Q[ vB ] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv2/r, следовательно

(1)

Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,

Подствавив(1),получим (2)

т. е. период вращения частицы в однородном магнитном поле задается только величиной, которая обратна удельному заряду (Q/m) частицы, и магнитной индукцией поля, но при этом не зависит от ее скорости (при v<<c). На этом соображении основано действие циклических ускорителей заряженных частиц.

Сила Лоренца

- сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q - заряд частицы;
V - скорость заряда;
B - индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.


Направление силы Лоренца определяется по правилу левой руки:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца


.

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0, и заряд в магнитном поле движется равномерно и прямолинейно.

Магнитное поле. Индукция и напряженность магнитного поля. Закон Ампера.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Магнитное поле может создаваться током заряженных частиц и/или магнитным моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля

Магни́тная инду́кция векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля на заряд , движущийся со скоростью , равна

Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В СИ: где — магнитная постоянная. (4П*10^-7 Гн/м)

Зако́н Ампе́ра — закон взаимодействия электрических токов. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. dF=I{dI,B} B-вектор магнитной индукции, dI-вектор по модулю равный и совпадающий с током, dF направление определяется по правилу левой руки (Если расположить ладонь левой руки так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца направлены по току, то отставленный на 90° большой палец укажет направление силы, действующей на проводник.)

2) Закон Био - Савара-Лапласа и следствия из него: после прямого тока и в центре кругового тока.

Это физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.

где d l — вектор, по модулю равный длине d l элемента проводника и совпадающий по направлению с током, r —радиус-вектор, проведанный из элемента d l проводника в точку А поля, r — модуль радиуса-вектора r. Направление d B перпендикулярно d l и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление d B, если поступательное движение винта соответствует направлению тока в элементе.

Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы d B от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов d B можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами d l и r), выразив через него все остальные величины.

Магнитное поле в центре кругового проводника с током - все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов d B можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin a =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R.

3) Циркуляция вектора напряженности магнитного поля. Поле соленоида и тороида.

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

В математической формулировке для магнитостатики теорема имеет[2]следующий вид[1][3]:

Здесь — вектор магнитной индукции, — плотность тока; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Данная форма носит название интегральной, поскольку в явном виде содержит интегрирование. Теорема может быть также представлена в дифференциальной форме:

Экспериментальное изучение магнитного поля соленоида показывает, что внутри соленоида поле однородно, вне соленоида — неоднородно и практически отсутствует.

Поле внутри соленоида однородно (при расчетах пренебрегают краевыми эффектами в областях, прилегающих к торцам соленоида).

Важное практическое значение имеет также магнитное поле тороида — кольцевой катушки, у которой витки намотаны на сердечник, который имеет форму тора. Магнитное поле сосредоточено внутри тороида, а вне его поле равно нулю.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 6297; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.175.191 (0.009 с.)