Подальший розвиток фотометрії та інші оптичні дослідження 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Подальший розвиток фотометрії та інші оптичні дослідження



Оптика XVIII ст. розвивалася на основі вдосконалення оптичних приладів. Одним з найважливіших досягнень було створення ахро­матичних лінз. Л. Ейлер, на відміну від І. Ньютона, вважав можли­вими ахроматичні оптичні системи. Англійський майстер Дж. Дол- лонд виступив на захист думки І. Ньютона. Він почав експеримен­тувати з різними лінзами і в 1758 р. сконструював ахроматичний об’єктив. На цій основі Ф. Епінус у 1784 р. сконструював перший ахроматичний мікроскоп.

Інше важливе досягнення в розвитку оптики XVIII ст. пов’язане з появою фотометрії, що було обумовлено як загальним розвитком оптики, так і потребами оптичної практики: вдосконалення оптичних інструментів потребувало покращення яскравості відображення; астрономи все більше цікавились порівнянням яскравості небесних світил; суспільство хвилювали питання покращання освітлення при­міщень, вулиць, площ тощо. Розвиток фотометрії базувався на вивченні кількісних характеристик світла при відображенні, залом­ленні та проходженні крізь поглинаюче середовище.

Після, праць П. Бугера помітний внесок в розвиток фотометрії зробив німецький фізик И. Ламберт. У 1760 р. в праці “Фотометрія, або про виміри та порівняння світла, кольору та тіні” він вивів вихід­ні положення та закони фотометрії. Йому належить доведення, що теплові промені, як і світлові, розповсюджуються прямолінійно


(1777). Й. Ламберт фактично встановив (хоч і не дав чітких визна­чень) основні поняття фотометрії: силу світла, яскравість, освітлення. Він вивів цілий ряд основних фотометричних закономірностей.

В галузі теоретичних поглядів на природу світла протягом всього XVIII ст. панували погляди І. Ньютона, на захист хвильової теорії виступали лише Л. Ейлер та М. Ломоносов. У 1746 р. Л. Ейлер опублікував працю “Нова теорія світла та кольорів”, в якій він пояс­нював різнокольоровість як наслідок різної довжини хвиль світла. У 1752 р. він висунув положення про те, що мінімальна довжина світлової хвилі відповідає фіолетовому кольору, а максимальна — червоному. За його теорією тіло, що світиться, викликає в ефірі коли­вальні рухи, які розповсюджуються в усі боки по прямих лініях. Л. Ейлер висловив ідею світлового резонансу та використав її як основу пояснення інтерференції в тонких пластинках. Теорія Л. Ейле- ра, яка містила цілий рад цікавих положень, але не мала математич­ної бази та не давала переваг перед ньютоновою, оцінювалась його сучасниками як деяке чудернацтво великої людини.

У корпускулярній теорії світла для М. Ломоносова було несприй- няттощ визначення особливих сил, що діють між частинками світла та частинками звичайних тіл. Він наводив аргументи на користь хви­льової теорії світла. Оптичні проблеми розглядалися ним в “Слові про походження світла, нову теорію, що кольори представляє” (1756) та в інших роботах, що не були опубліковані. Крім звичайної матерії, з якої складаються всі тіла, М. Ломоносов приймав ще ефір, рухом частинок якого він намагався пояснити властивості світла та елек­трики. Він вважав, що ефір, як і звичайні тіла, складається з части­нок *— шорстких кульок, але меншого розміру; частинки ефіру щільно наповнюють простір, тому світло розповсюджується з надзви­чайною швидкістю. Світлові рухи як коливальні розповсюджуються в ефірі. М. Ломоносов дійшов висновку про поперечність світлових хвиль; визнання в фізиці ця ідея знайшла лише в XIX ст.

М. Ломоносов розробив також теорію кольорів, уточнюючи свої погляди на структуру ефіра. На його думку, коливальні рухи ефіра не дають відчуття кольоровості; такі відчуття виникають внаслідок оберту кульок. Обертання кульок кожного з трьох (визначених Ломо- носовим) родів кульок дає відчуття певного кольору — червоного, жовтого або блакитного. Всі інші кольори утворюються комбінацією цих основних. Згідно з положеннями теорії М. Ломоносова, колір тіла, що світиться, залежить від його хімічного складу. Здатність відбивати та поглинати промені також визначається хімічним складом тіл.

Електрика як галузь наукових досліджень

Електрика була галуззю фізики, перша фундаментальна розробка якої була здійснена в XVIII ст.

У 1733 р. французький фізик ПІ. Дюфе встановив тяжіння різнойменних зарядів та відштовхування однойменних, таким чином він обгрунтував наявність двох видів електрики. Лейденські фізики (П. Мушенбрук та Е. Клейст) винайшли спосіб зберігання та концен­трації електричних розрядів ■— так звану лейденську банку (1745— 1746). Була створена теорія на пояснення явищ електрики, але вона була дуже заплутаною.

Можливість накопичувати електричні заряди, яку надавала лей­денська банка, була використана для експериментування. П. Мушен­брук першим звернув увагу на фізіологічну дію електричного розряду: його правиця відчула в одному з експериментів дуже сильний удар. З того часу поширилась зацікавленість фізіологічною дією електрич­ного розряду. Відомо, наприклад, що Людовік XV та його двір розва­жались", пропускаючи розряд лейденської банки крізь шеренгу солдат та спостерігаючи їх муки. Вивченням дії електрики на людський орга­нізм зацікавились вчені та лікарі. Відомий, наприклад, твір з елек­тротерапії вождя французької революції Марата (1783), який був за освітою лікарем. У 1791 р. Луїджі Гальвані (1737—-1798) публікує ‘Трактат про сили електрики внаслідок мускульного руху”, в якому містилось твердження про наявність електричного струму в тканинах організму. І хоча застосування електрики для лікування розпочалось значно пізніше, цей інтерес сприяв розвиткові наукових досліджень.

Видатним дослідником електрики був американець Бенджамін Франклін (1706—1790), який провів у 1747—1754 рр. серію експе­риментальних досліджень, пояснив принцип дії лейденської банки, запровадив загальноприйняті тепер позначення двох протилежних електричних станів заряджених тіл знаками “ + ” та “ - Він один з перших звернув увагу на схожість між блискавкою та електричною іскрою; розробив основи ідеї громовідводу (1750). Чех П. Дівіш побу­дував іромовідвід у 1754 р., а Б. Франклін зробив спробу теоретично пояснити явища електрики (з позицій визнання “невагомої” рідини, що пронизує тіла). Результати своїх досліджень Б. Франклін виклав в листах до членів Лондонського Королівського товариства. В 1751 р. листи були опубліковані в Лондоні та стали відомими в Європі, дослідники експериментально підтвердили гіпотезу Б. Франкліна про електричне походження грози. Пізніше такий дослід був відтворений Б. Франкліном і на цій основі був сформульований закон збереження

електричного заряду. В 50-і роки незалежно від Б. Франкліна дослід­ження грозових явищ проводили в Росії Г.Ріхман та М. Ломоносов.

Георг Ріхман (1711—1753) запровадив кількісні вимірювання приладом “електричний покажчик” власної розробки (1745). Цей ж прилад набув широкого застосування в наступних дослідженнях з електрики, виконаних як самим Г. Ріхманом, так і М. Ломоносовим. Г. Ріхман провів велику серію експериментів з вивчення електризації та електропровідності тіл, із з’ясування залежності електроємності тіл від їхньої маси та форми, а в 1748—1751 рр. відкрив явище елек­тростатичної індукції. У 1752 р. він разом з М. Ломоносовим прово­див численні дослідження атмосферної електрики за допомогою сконструйованих ними спеціальних вимірювальних пристроїв — “громових машин”. У 1753 р. Г. Ріхман під час експерименту трагічно загинув від блискавки.

Опрацювання власних спостережень та думок інших дослідників дозволило М. Ломоносову розробити теорію виникнення атмосферної електрики, яка була представлена в доповіді “Слово про явища повіт­ряні, що походять від електричної сили” (1753). М. Ломоносов один з перших почав досліджувати полярне сяйво та розробив його теорію: полярне сяйво є електричними розрядами в розріджених високих шарах атмосфери. Теоретичні висновки були перевірені експеримен­тально на світінні кулі, з якої було відкачано повітря. Ця ломоно- сівська куля була першим приладом для одержання електричного розряду у вакуумі.

У 1753 р. Дж, Беккаріа доводить, що електричний заряд у провід­нику розподіляється по його поверхні. У другій половині 50-х рр. увагу привертають роботи петербурзького академіка Франца Епінуса (1724—1802), який відкрив явище піроелектрики та розробив першу математичну теорію електричних і магнітних явищ. Він зробив декіль­ка відкриттів в галузі фізики електрики та магнетизму. Саме йому належить перше серьозне дослідження електричної індукції. Ф. Епі­нус багато в чому продовжував ідеї Б* Франкліна. Він вважав, що існує електрична рідина, дка може рухатись в провідниках вільно, а в ізоляторах обмежено; що частинки електричної рідини наділені силами, які спричинюють їх відштовхування між собою та притягу­вання з частинками звичайної матерії. Але, на відміну від Б. Франклі­на, Ф. Епінус вже не припускав наявності електричної атмосфери навколо тіл. Він вважав, що будь-яка взаємодія електричних зарядів складається з сил взаємодії між частинками електричної рідини. Ана­логічні погляди Ф. Епінус висловлював відносно магнетизму.

У своєму головному творі “Досвід теорії електрики та магнетиз­му” (1759), Ф. Епінус ставите питання про величину сил, що діють

між електричними зарядами та магнітами і висловив припущення, що вони схожі на сили тяжіння, а тому обернено пропорційні квадра­ту відстані.

Теорія Ф. Епінуса була початком розвитку одного з двох основ­них напрямків у вченні про електрику та магнітні явища — який базувався на теорії далекої дії (електричні та магнітні сили діють на відстані безпосередньо). Майже одночасно виникла теорія близької дії, за якою електричні взаємодії передаються опосередковано — крізь ефір. Цю думку висловлювали М. Ломоносов та Л. Ейлер. Однак вона не набула розвитку в XVIII ст., для цього ще не було створено необхідних передумов (розвиток електродинаміки, дослід­ження перетворень електрики в магнетизм, електромагнітної енергії в інші види тощо). Теорія ж далекої дії, навпаки, здобула визнання і панувала до появи робіт Дж. Максвелла.

У середині XVIII ст. деякою мірою розвинулась експерименталь­на техніка з дослідження електричних та магнітних явищ. Внаслідок удосконалення машини О. Геріке була створена електростатична машина. З’явилися вимірювальні прилади — електрометри Г. Ріхма- на, А Беннета. Електроскоп А. Беннета (1787) не змінився до сьо­годнішнього дня.

Новий етап в історії розвитку вчення про електрику і магнетизм розпочався із встановлення основного закону електростатики та магнітостатики — закону Кулона. Історичними попередниками цього закону були Ф. Епінус (1759), Д. Бернуллі (1760), Дж. Прістлі (1767), які висловлювались щодо сили взаємодії між магнітами та електрич­ними зарядами. Схожий висновок зробив у 70-х рр. англієць Генрі Кавендиш (1731—1810), який провів дослід з визначення елементар­ного закону взаємодії між електричними зарядами та виконав тео­ретичні розрахунки. Г. Кавендиш не опублікував своєї роботи, це зробив значно пізніше Дж. Максвел.

У 80-х рр. французький вчений і інженер Шарль Кулон (1736-— 1800) безпосередньо вимірив сили, що діють між електричними заря­дами, та встановив закон, що носить його ім’я. Свої роботи III. Ку­лон опублікував у статтях за період 1785—1788 рр.

Для визначення сили взаємодії між електричними зарядами ПІ. Кулон створив спеціальний прилад —• крутильні ваги. Він також визначив залежність сили взаємодії між зарядами від їх величини, для чого використав метод поділу зарядів. III. Кулон дав найбільш повне формулювання закону взаємодії між двома точечними елек­тричними зарядами. Він провів дослідження розподілу електрики та підтвердив, що вона збирається на поверхні провідників.

Одночасно з дослідженням електричних сил Ш. Кулон дослідив взаємодію магнітів. Він вважав, що існує (як і у випадку з електри­кою) дві магнітні рідини, що мають властивість притягування та відштовхування. Але, на відміну від електричних рідин, магнітні ріди­ни знаходяться всередині молекул магнітних матеріалів та можуть змішуватись і утворювати таким чином елементарні магнітики. До­слідженнями Ш. Кулона були завершені роботи з дослідження ста­тичної електрики. У 1778 р. Дж. Валліс, А. Бургманс та Ш. Кулон розвинули двофлюїдну теорію магнетизму. Роботи Ш. Кулона поклали початок математичної розробки теорії електрики та магнітних явшц. У 1785 р. Ш.Кулон сформулював основний закон електричної взає­модії, пізніше він розповсюдив його на взаємодію полюсів магніту.

Наприкінці XVIII ст., у 1799 р. Алессандро Вольта (1745—-1827) сконструював перше джерело електричного струму, електричну бата­рею — “вольтов сговп”.

Оформлення вчення про теплоту

Вчення про теплоту — одна з малорозвинутих в першій поло­вині XVIII ст. галузей фізичного знання. Дослідження термічних процесів та з’ясування фізичної природи теплоти сприяли розвитку трьох основних напрямків — термометрія, калориметрія та механічна теорія теплоти, започаткованих ще у XVII ст. Розвиткові наукових поглядів про теплоту сприяло вдосконалення приладу для вимірю­вання —- термометра. У XVIII ст. цей прилад набув остаточної форми. Над ним працювали Г. Фаренгейт (1714), Р. Реомюр (1730) та А. Цельсій (1742). Вони здійснили цілий ряд вимірювань над яви­щами нагрівання та охолодження і розробили таку градусну шкалу, яка дозволила точно скоординувати різні термометри та досягти одно­манітності їх даних. З’явившись спочатку головним чином як метео­рологічний прилад, термометр в подальшому сприяв розвиткові досліджень в галузі тепла. Стимулюючий вплив на розвиток вчення про теплоту мала хімія.

Інтенсивна розробка вчення про теплоту різними дослідниками відбувається у 40-і рр. XVIII ст. Крім названих певний внесок був зроблений Г. Ріхманом, який, виходячи з теоретичних міркувань, у 1744 р. вивів формулу для визначення температури суміші однорідних рідин. В той самий час М. Ломоносов створив кінетичну теорію теплоти, яка викладена ним в праці “Міркування про причини тепло-


ти і холоду” (1750). В ній М. Ломоносов обгрунтував погляд на тепло­ту як обертовий рух “нечуттєвих частинок”, що складають тіло.

Важливою подією, що прискорила вирішення питання про роз­поділ теплоти між неоднорідними тілами, було відкриття шотланд­ським хіміком Джозефом Блеком (1728—1799) прихованої теплоти плавлення (1757). Результати своїх дослідів і висновки Дж. Блек викладав в лекціях, які він читав спочатку в Глазго, а потім у Един­бурзі. Але оскільки він їх не друкував, то його результати стали широко відомими лише в 70-х рр. Існування захованої теплоти плавлення було відкрито також шведським вченим Й. Вільке. В по­дальшому Дж. Блек ввів поняття: питомої теплоємності (1760), а в 1762 р. відкрив приховану теплоту плавлення та пароутворення. Й. Вільке вводить поняття теплоємності та одиницю виміру тепла, що започаткувало калориметрію.

Розвиток калориметрії в той час був пов’язаний з іменами Г. Крафта, Г. Ріхмана, А. Лавуазьє, П. Лагахаса та інших. Т. Крафт та Г. Ріхман у 1744 р. вивели основну калориметричну формулу для визначення температури суміші рідин, що мають різну температуру. У 1783 р. А. Лавуазьє та П. Лаплас винайшли калориметр та визна­чили питому теплоємність багатьох твердих та рідких тіл, вияпвили її зв'язок із температурою тіла. Майже в той самий час була встанов­лена залежність точки кипіння води від атмосферного тиску.

До 80-х рр. XVIII ст. склалися основні поняття вчення про тепло» ту. В роботі “Мемуар про теплоту” (1783) А. Лавуазьє та її. Лашшс немов би підвели підсумки розвитку вчення про теплоту: поняття температури, кількості теплоти, теплоємності тощо вважаються вже твердо встановленими. І, нарешті, у 1791—1792 рр. П. Прево висунув теорію теплової рівноваги.

Водночас з розвитком калориметрії розпочинаються дослідження явищ передачі теплоти. Вони також відігравали важливу роль у вста­новленні основних понять вчення про теплоту. Оскільки наї початку XVIII ст. було з’ясовано, що процес передачі теплоти здійснюється різними способами, які мають різну фізичну природу, то дослідження у другій половини XVIII ст. розділилися на два напрямки: вивчення теплопровідності та теплового випромінювання.

Вже М. Ломоносов висловив думку про існування теплового випромінювання, про передачу теплоти через вакуум (ефір) та про теплову дію, світлових променів. Після М. Ломоносова виступив, шведський вчений К. Шеєлє з гіпотезою про теплові промені, їх відображення та поглинання (1777). Внаслідок цих та інших робіт на

початок XIX ст. було з’ясовано існування теплових променів, відомі деякі їхні властивості, але невідомою залишалась природа цих про­менів.

Були зроблені перші спроби кількісного аналізу теплопровідності. Й. Ламберт у праці “Пірометрія” (1778) розглянув задачу про розпо­діл теплоти уздовж стержня для стаціонарного випадку. В подальшо­му цю задачу аналізували Ж. Біо та П. Лаплас. Проблема теплопро­відності була вирішена вже в першій половині XIX ст.

Започатковуються систематичні дослідження розширення тіл при нагріванні. Окрім наукового інтересу дослідження цих явищ мало важливе практичне значення, насамперед для розвитку вимірювальної техніки. Цьому напрямку були присвячені роботи багатьох фізиків. Так П. Мушенбрук сконструював у 1731 р. пірометр — прилад для вивчення розширення твердих тіл від нагрівання. Перші добротні кількісні результати з вимірювання теплового розширення твердих тіл отримали А. Лавуазьє та П. Лаплас, які розробили для цього більш-менш точний метод і вказали на технічну важливість вимірю­вання коефіцієнта теплового розширення тіл.

Перші дані з розширення газів були отримані ще на початку XVIII ст. французьким вченим Г. Амонтоном. Він дійшов висновку, що вода та будь-яка інша рідина не має здатності розширюватись пропорційно “степеням теплоти”. Така властивість належить лише повітрю. Внаслідок цього він сконструював повітряний термометр, за показаннями якого можна було перевіряти всі інші термометри.

Стійкість концепції теплороду затримувала формування механіч­ної теорії теплоти, тобто реалізацію ідеї перетворення механічного руху в теплоту, та формування кінетичних уявлень про теплоту. Але дослідження явищ теплоти спричинили розвиток уявлень про приро­ду цього явища; речовинна теорія теплоти набувала в першій поло­вині XVIII ст. все більшого розповсюдження і навіть стала доміную­чою. Поняття про теплород як невагому рідину, що переходить від одного тіла до іншого, було підтримано уявленням про інші невагомі речовини (флюїди, флогістон).

Місію відкидання вчення про флогістон та теплород виконав М. Ломоносов. В своїй дисертації “Міркування про причини теплоти та холоду” він заявив, що неможливо теплоту пояснювати згустінням якоїсь спеціальної тонкої матерії. Для побудови теорії теплоти М. Ломоносов використав створене ним нове вчення про атомну будову речовини з новою методикою та методологією. Він, виходячи

з уявлень про те, що рух частинок матерії є достатньою основою теплоти, цілком природним шляхом пояснював всі відомі на той час теплові явища, причому зробив декілька наукових припущень, які повністю підтвердились в подальшому розвитку наукового пізнання (наприклад, про існування межі для низьких температур — абсолют­ний нуль та про відсутність такої межі для високих температур).

Уявлення про теплоту як про рух частинок тіла розвивали Й. Бернуллі та Д. Бернуллі. А. Лавуазьє та П. Лаплас, хоч і не ви­словлювались спеціально за чи проти якоїсь з теорій природи тепло­ти, фактично стояли на позиціях речовинної теорії теплоти.

Перемога речовинної теорії теплоти над кінетичною у другій половині XVIII ст. була історично зумовлена, насамперед, тим, що фізики вивчали теплові явища поза зв’язком з іншими фізичними явищами, поза вивченням перетворень теплоти в інші форми руху і навпаки. Фізики мали головним чином сцраву з явищами перероз­поділу теплоти та її передачею, коли загальна теплота залишалась незмінною. Якщо те, що спостерігалось в дослідах, добре вкладалось в уявлення про теплоту як речовину, то воно не вкладалось, здавалось таким, що суперечить принципу кінетичної теорії теплоти. Лише на межі XVIII—XIX ст. експерименти Е. Румфорда дали підстави щя перемоги нової точки зору. Вивчення явищ теплоти розхитувало теорію особливих речовин — теплороду та такої, що породжує холод. Е. Маріотт першим висловив думку, що холод є низькою ступінню теплоти.

Еврістичність кінетичної теорії теплоти М. Ломоносова, яка не здобула в XVIII ст. широкого розповсюдження, демонструє створена ним же кінетична теорія газів, що була викладена в праці “Досвід теорії пружної сили повітря” (1748). В ній М. Ломоносов, виходячи з атомної будови тіл, розробив кінетичну модель ідеального газу. Користуючись цією теорією, М. Ломоносов дав блискуче пояснення; фізичної сутності закону Бойля-Маріотт, причому передбачав неми­нучість відхилення від цього закону при сильному стисненні газів. Це передбачення знайшло підтвердження і використання через століття в працях Й. Ван-дер-Ваальса. А в цілому розроблена М. Ломоносовим модель збігається з тією, що була прийнята фізи­кою в середині XIX ст. Головна відмінність полягала в поясненні механізму взаємодії: М. Ломоносов не приймав, як це буде в кіне­тичній теорії тазів XIX ст., молекули повітря за пружні кульки. В цілому ж М. Ломоносов створив передумови для найзагальнішої тео­рії теплових явищ сучасності.



Поделиться:


Последнее изменение этой страницы: 2016-04-18; просмотров: 343; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.94.171 (0.027 с.)