Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Интерпретация результатов простого регрессионного анализаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В качестве результатов линейного регрессионного анализа SPSS выводит на экран компьютера три таблицы: «Model Summary», «ANOVA» и «Coefficients» (табл. 4.1,4.2 и 4.3). Таблица 4.1 Model Summary13
а Predictors - влияющие переменные (константа): расходы на проживание. b Dependent Variable - зависимая переменная: общие расходы на отдых.
В табл. 4.1 представлены основные показатели, оценивающие качество линейной модели, построенной в результате проведения регрессионного анализа. В рассматриваемом примере значение коэффициента детерминации R составляет 0,605 (>0,5), что свидетельствует о наличии тесной линейной взаимосвязи между суммой общих расходов на проведения отпуска и суммой, уплачиваемой туристами за проживание в гостинице или пансионе. Коэффициент R-квадрат (R Square) в рассматриваемом примере составляет всего 0,366. Это означает, что построенная регрессионная модель описывает только 36,6% случаев, когда увеличение суммы оплаты за проживание в гостинице или пансионе влечет за собой увеличение общих расходов на проведение отпуска. Это необходимо учитывать при применении результатов анализа в прогнозировании расходов туристов. Значение теста Дарбина—Уотсона на автокорреляцию в рассматриваемом примере составляет 1,874 (см. табл. 4.1), т.е. близко к 2. Это говорит об отсутствии систематических связей между остатками, т.е. между отклонениями наблюдаемых (эмпирических) значений от теоретически ожидаемых (расчетных).
а Predictors - влияющие переменные (константа): расходы на проживание. b Dependent Variable - зависимая переменная: общие расходы на отдых. В последнем столбце таблицы «ANOVA» (см. табл. 4.2) значение показателя «Статистическая значимость» (Sig.) должно быть меньше или равно 0,5. В рассматриваемом примере этот показатель составляет ноль. Это свидетельствует о том, что регрессионная модель, построенная на основе данных респондентов, попавших в выборку, справедлива для всей генеральной совокупности в целом. Результаты регрессионного анализа, описывающие построенную регрессионную модель, представлены в табл. 4.3. Таблица 4.3 Coefficients8
а Dependent Variable - зависимая переменная: общие расходы на отдых. В столбце «В» таблицы «Коэффициенты» представлены параметры построенной регрессионной модели. В рассматриваемом примере уравнение регрессии имеет вид у = 642,273 + 1,596х. Величина «Constant» показывает значение зависимой переменной при нулевом значении независимой переменной. Построенная регрессионная модель в рассматриваемом примере показывает, что если турист не тратит никаких денег за проживание в отеле или пансионе (например, если он остановился у друзей или живет в палатке), то его общие расходы на проведение отпуска в среднем составят 642,273 евро. В следующем столбце табл. 4.3 представлены стандартные ошибки (Std. Error). При доверительном интервале 95% каждый коэффициент может отклоняться от средней величины на ±2 х xStd.Error. Например, сумма общих расходов на проведение отпуска при нулевых затратах на проживание в гостинице или пансионе может отклоняться от среднего значения (642,273 евро) на ± 2 • 31,526, т.е. на ± 63,052 евро. Значение коэффициента регрессии независимой переменной «Затраты на проживание в гостинице или пансноне» в построенной модели составпяет 1,596. Это означает, что увеличение затрат на проживание в отеле или пансионе на 1 евро влечет за собой увеличение суммы общих затрат на проведение отпуска на 1,596 евро. 4.1.4. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОСТОЙ РЕГРЕССИОННОЙ МОДЕЛИ В SPSS Как уже было отмечено выше, основным достоинством линейной регрессии является возможность наглядного представления результатов анализа в виде линейного графика в двухмерной системе координат. Задание на построение такого графика осуществляется в SPSS в опции «Graphs». При выборе меню «Graphs > Scatter» на экране появляется диалоговое окно «Scatte/Dot» («Диаграмма рассеяния»), в котором следует выбрать тип диаграммы. В данном случае следует выбрать диаграмму «Si rnple Scatter» (рис. 4.7). Путем нажатия кнопки «Define» в диалоговом окне «Scatte/Dot» («Диаграмма рассеяния») на экране компьютера появляется новое диалоговое окно «Simple Scatterplot» («Простая диаграмма рассеяния») (рис- 4.8). В левом поле диалогового окна «Простая диаграмма рассеяния» указываются метки всех переменных, содержащихся в исходном файле данных SPSS. Из списка меток всех переменных следует выбрать метку зависимой переменной и перенести ее в правое поле окна «YAxis». В рассматриваемом примере это метка переменной «q_45_2» — «Общие расходы на отдых». Далее из списка всех переменных, представленных в левом поле окна «Простая диаграмма рассеяния», следует выбрать метку независимой переменной и перенести ее в правое поле окна «XAxis». В рассматриваемом примере это метка переменной «q_47__2» — «Расходы на проживание». Нажав кнопку «ОК» в диалоговом окне «Простая диаграмма рассеяния», мы закрываем данное окно, и на экране компьютера появляется диаграмма рассеяния. К данному рисунку следует подвести курсор мыши и нажать кнопку мыши два раза. В результате этой операции на экране появится диалоговое окно «Chart Editor» («Редактор диаграмм») (рис. 4.9). В диалоговом окне «Chart Editor» следует выбрать меню «Elements > Fit Line at Total», в результате чего на экране появится новое диалоговое окно «Properties» («Свойства») (см. рис. 4.9). Во вкладке «Fit Line» («Приближенная линия») диалогового окна «Properties» («Свойства») следует отметить линейный вид графика — «Linear» (рис. 4.10). После нажатия кнопки «Close» в диалоговом окне «Свойства» (рис. 4.10) данное окно закрывается. На рисунке построенной ранее диаграммы рассеяния (см. рис. 4. 10 — без линии тренда) появляется линия, отображающая линейную регрессионную модель. Следует отвести курсор мыши от рисунка и нажать клавишу мыши, в результате чего закроется диалоговое окно «Chart Editor» («Редактор диаграмм») и на экране останется только построенный график (рис. 4.11). На рис. 4.11 представлено графическое изображение регрессионной модели у = 642,273 + 1,596х. Используя эту модель, можно прогнозировать, как будут изменяться общие расходы на отдых при изменении расходов на проживание в гостинице/пансионе для туристов, отдыхающих в курортной зоне «Баварский лес».
Построенная нами регрессионная модель описывает только 36,6% всех данных, полученных в результате опроса туристов. Это говорит о том, что вероятность ошибки при использовании данной регрессионной модели в целях прогнозирования достаточно велика.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 2163; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.188.195 (0.008 с.) |