Уравнение дуги окружности в комплексной форме. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнение дуги окружности в комплексной форме.

Поиск

 

При изменении параметров одного из элементов сложной цепи токи всех ветвей, на­пряжения на всех элементах изменяются так, что концы векторов этих величин описывают дуги некоторых окружностей. Для исследования за­висимости любой векторной величины (U, I) от переменного параметра доста­точно определить дугу окружности, по которой пере­мещается конец этого век­тора, другими словами, построить круговую диаграмму.

Уравнение дуги окружности в комплексной форме имеют вид:

,

где М = Мejb – исследуемый вектор, M 0 - вектор-хорда дуги окружности, a = const – посто­янный коэффициент, y = const – постоянный угол, n = var = (0 - ¥) – переменный параметр.

Порядок построения круговой диаграммы по заданному уравнению:

 

       
 
 
   
Рис. 80

 

 


 

 

1) На комплексной плоскости в выбранном масштабе mм откладывают вектор М 0=5ej20 - хорду дуги окружности (рис. 80).

2) Вдоль вектора-хорды М 0 от его начала в выбранном масштабе mа от­кладывают отрезок, равный коэффициенту “ а ”.

3) Из конца отрезка “ а ” под углом - y к вектору М 0 проводят линию пе­ременного параметра (л.п.п.), на которой наносят масштаб mа, принятый ранее для отрезка “ а ”.

4) Определят положение центра дуги как точку пересечения двух пер­пендикуляров: первый проводят через середину вектора-хорды М 0, а второй – из начала координат к линии переменного параметра.

5) Проводят рабочую дугу по ту сторону от вектора-хорды М 0, где рас­положена линия переменного параметра.

6) Вдоль линии переменного параметра откладывают текущее значение параметра “ n ” соединяют точку с началом вектора М 0 (началом координат) и продолжают прямую линию до пересечения с дугой окружности. Искомый век­тор М соответствует отрезку от начала координат до точки пересечения прямой линии с дугой окружности, при этом модуль вектора равен длине отрезка в масштабе mм, а начальная фаза вектора – углу между вещественной осью +1 и напрвлением вектора.

На рис. 80 показано семейство векторов М, построенных для различных значений переменного параметра “ n ” (n = 0; 10; 20; 30).

2. Круговая диаграмма тока и напряжений для элементов последо­вательной цепи

 

Рассмотрим схему цепи, состоящую из последовательно включенных ис­точника ЭДС E и пассивных элементов Z 1Z 2 (рис. 81). Задано, что E = Eeja =const, Z 1 = Z 1 ejj 1 = const, Z 2 = Z 2 ejj 2, где j 2=const, a Z 2 = var= 0÷¥ - пере­менный параметр.

 
 

 


Преобразуем уравнение закона Ома для схемы к виду дуги окружности в комплексной форме:

,

где М 0 = I к= E / Z 1 – ток короткого замыкания, соответствует вектору-хорде дуги окружно­сти, Z 2 = n = var – переменный параметр, Z 1= a = const- постоянный коэффициент, j 2 - j 1= y = const – постоянный угол.

Таким образом, уравнение для тока I является уравнением дуги окружно­сти.

 

Напряжение на первом элементе представляет собой уравнение дуги ок­ружности:

.

Напряжение на втором элементе представляет собой уравнение дуги ок­ружности:

.

Для каждого из векторов I, U 1, U 2 может быть построена круговая диа­грамма со­гласно полученным уравнениям и по ним исследована их зависимость от переменного па­раметра n = Z 2.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 467; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.69.138 (0.008 с.)