Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Температурная зависимость электропроводности полупроводниковСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Закон Ома в дифференциальной форме
содержит удельное сопротивление
где
В металлах подвижность Удельную электропроводность чистого (беспримесного) полупроводника, называемая собственной удельной электропроводностью,
где В беспримесных полупроводниках уровень Фéрми лежит приблизительно посередине запрещенной зоны. Поэтому для электронов зоны проводимости, располагающихся вблизи дна зоны проводимости, показатель степени в (35.1)
С учетом того, что
Количество электронов, перешедших в зону проводимости, а следовательно, и количество дырок, образовавшихся в валентной зоне, будет пропорционально вероятности (35.7). В полупроводниках, так же как и в металлах, с повышением температуры подвижности электронов
– основание натуральных логарифмов, – ширина запрещенной зоны, – постоянная Больцмана, – абсолютная температура, – предельное значение удельной электропроводности полупроводника при устремлении температуры в бесконечность, когда населенности валентной зоны и зоны проводимости электронами практически выравнивается. Таким образом, удельная электропроводность полупроводника с повышением температуры возрастает по экспоненциальному закону (см. рис. 35.10).
Температурная зависимость сопротивления полупроводника имеет вид:
где К полупроводникам принадлежат кристаллы многих элементов таблицы Менделеева (кремний Si, германий Ge, селен Se и др.), закись меди
. Четыре валентных электрона движутся вокруг остова и образуют облако отрицательного заряда. На рис. 35.11 показано схематическое изображение атома кремния с его четырьмя ковалентными связями.
Уход электрона, ранее принимавшего участие в образовании ковалентной связи, приводит к появлению вакансии – “ дырки ” (см. рис. 35.13). Возникновение дырок создает дополнительную возможность для перенесения заряда. Действительно, при наличии дырки валентный электрон соседнего атома под действием внешнего электрического поля может перейти на место дырки. Тогда в этом месте восстановится ковалентная связь, но зато возникнет дырка в позиции, из которой перешел валентный электрон, заполнивший вакансию. В эту новую дырку сможет перейти валентный электрон из другого соседнего атома и т. д. Вследствие этого ток будет поддерживаться не только электронами проводимости, но и валентными электронами, которые перемещаться точно так же, как и электроны проводимости, против электрического поля. Дырки же будут перемещаться в направлении электрического поля, то есть так, как двигались бы положительно заряженные частицы. Таким образом, в полупроводниках возможны два типа электропроводности: электронный, осуществляемый движением электронов проводимости, и дырочный, обусловленный движением дырок. Наряду с переходами электронов из связанного состояния в свободное (из валентной зоны в зону проводимости) происходят и обратные переходы, когда электрон проводимости заполняет одну из вакансий и превращается в валентный электрон (возвращается из зоны проводимости в валентную зону). Этот процесс называют рекомбинацией электрона и дырки. В равновесном состоянии устанавливается такая концентрация электронов (и точно такая же концентрация дырок), при которой за единицу времени происходит одинаковое число прямых и обратных переходов.
Примесная проводимость Теперь рассмотрим такой кристалл кремния, в котором небольшая часть атомов в узлах решетки замещена атомами другого химического элемента. Рассмотрим вначале случай, когда атомы примеси имеют больше валентных электронов, чем атомы кремния. Такими примесями могут быть элементы пятой группы периодической системы, такие как фосфор (Р), мышьяк (Аs), сурьма (Sb). Четыре из пяти валентных электронов примесного атома задействованы в ковалентных связях с четырьмя ближайшими соседними атомами кремния, а пятый электрон будет “лишним”. Кулоновская сила притяжения этого электрона к примесному атому в кристалле ослабляется в
между донорным уровнем и дном зоны проводимости (см. рис. 35.14). Ширина запрещенной зоны кремния , энергетический интервал в случае, если примесь – мышьяк, .
Рассмотрим теперь тот случай, когда в полупроводник введена примесь, атомы которой имеют меньше валентных электронов, чем атомы кристалла. Для кремния такими примесями могут быть элементы третьей группы периодической системы элементов, такие как бор (В), галлий (Ga), индий (In). С заменой атома кремния в узле кристаллической решетки на атом примеси одна из четырех ковалентных связей оказывается незаполненной, потому что у примесных атомов элементов третьей группы во внешней электронной оболочке имеется лишь по три электрона. Поскольку в кристалл введен нейтральный атом примеси, то незаполненная ковалентная связь возле примесного атома не несет электрического заряда и поэтому еще не является дыркой. С повышением температуры валентные электроны соседних с атомом примеси атомов кремния, которые еще не могут получить от атомов энергии, достаточной для перехода в зону проводимости, оказываются способными перепрыгнуть на незаполненную ковалентную связь возле примесного атома. Для этого нужна энергия меньшая, чем для перехода в зону проводимости. Место, оставшееся после электрона (разорванная ковалентная связь между атомами кремния), является дыркой, потому что с ним связан нескомпенсированный положительный заряд. Атомы примеси становятся при этом неподвижными отрицательными ионами. На рис. 35.15 они изображены в виде квадратиков. Примесную проводимость полупроводников, обусловленную направленным движением дырок, т. е. переходами связанных электронов от одного атома к другому, называют дырочной проводимостью, или проводимостью
типа тем, что при введении в кристалл акцепторных примесей в запрещенной зоне недалеко от потолка валентной зоны образуется примесный (акцепторный) энергетический уровень (см. рис. 35.15). Энергетический интервал между потолком валентной зоны и акцепторным уровнем определяет энергию ионизации акцепторных примесей. Если в кремнии примесью является бор, то энергетический интервал . Поскольку энергия ионизации акцепторных примесей значительно меньше ширины запрещенной зоны , то уже при достаточно низких температурах электроны валентной зоны будут переходить на акцепторный уровень.
Таким образом, один и тот же полупроводник может иметь как собственную, так и примесную проводимость. В зависимости от химической природы введенной в кристалл примеси, его электропроводность может быть электронной ( Постепенно нагревая примесные полупроводники, можно достичь такой температуры, когда отдельные электроны валентной зоны могут получить от атомов энергию, достаточную для перехода из валентной зоны в зону проводимости. При этом, наряду с возникшей ранее примесной проводимостью, будет наблюдаться собственная проводимость, обусловленная свободными электронами и дырками. Когда в примесном полупроводнике, например Следует отметить, что во всех рассмотренных случаях собственной и примесной проводимости одновременно с генерированием носителей тока (при нагревании или при передаче энергии кристаллу иным способом) происходит и обратный процесс – рекомбинация. Уровень Фéрми в полупроводниках Электронно-дырочный переход Рассмотрим физические процессы, происходящие в месте контакта двух полупроводников Поскольку в
где
область, где рекомбинируют с дырками, а дырки, проникшие в область, рекомбинируют с электронами. Поэтому прилегающие к границе тонкие слои полупроводника будут обеднены на носители тока. Зато проявятся заряды неподвижных примесных ионов, которые раньше компенсировались основными носителями тока. В прилегающем к границе слое области появится положительный объемный заряд, а в таком же слое области – отрицательныйобъемный заряд (см. рис. 35.16).
Таким образом, на границе
где Приконтактный слой со сниженной вследствие рекомбинации встречных потоков электронов и дырок концентрацией носителей тока называют запирающим слоем. В запирающем слое возникает контактная разность потенциалов или, иначе говоря, создается потенциальный барьер (несколько десятых вольта) для основных носителей тока. Согласно представлениям зонной теории,
Подключим к кристаллу с
и имеют одинаковое направление, потенциальный барьер, как это показано на зоной диаграмме рис. 35.19, повышается. Сопротивление запирающего слоя еще больше возрастают. Электроны и дырки перемещаются в противоположных направлениях от перехода, который, таким образом, обедняется на основные носители тока. Такое направление поля называется обратным или непропускным. Незначительный обратный ток может поддерживаться лишь за счет неосновных носителей тока.
перехода зависимость тока через переход от приложенного к переходу внешнего напряжения . Участку А характеристики соответствует прямой ток, а участку В – малый обратный ток. Обратный ток уже при достаточно малых значениях обратного напряжения достигает насыщения, когда практически все зарождающиеся в толще полупроводника неосновные носители рекомбинируют в области перехода и поэтому обратный ток не может больше возрастать, несмотря на увеличение напряжения. При достаточно высоком обратном напряжении количество неосновных носителей лавинообразно нарастает вследствие ионизации атомов полупроводника ускоренными электрическим полем электронами, происходит электрический пробой перехода. При этом величина тока стремительно растет (участок С характеристики), и контактный слой может разрушиться. На участках А и Б вольт-амперная характеристика перехода описывается выражением
где
Полупроводниковый диод
переходом обладает односторонней проводимостью. Способность перехода пропускать ток только в одном направлении используется в силовых установках тока и в радиотехнике для выпрямления и преобразования высокочастотных электрических колебаний. Прибор с одним переходом называется полупроводниковым диодом (см. рис. 35.23).
Стрелка в обозначении полупроводникового диода на схемах соответствует прямому току. Во время положительного полупериода входного напряжения сопротивление диода очень мало по сравнению с сопротивлением резистора R, на котором падает выходное напряжение, поэтому Транзистор Транзистор – это электронный полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических колебаний разных частот. Наиболее распространенный транзистор изготовляется на базе кристаллической пластинки германия, кремния или другого полупроводника размером приблизительно 2 на 2 мм с электронной (
перехода, каждый из которых имеет такие же электрические свойства, как и
полупроводниковый диод. Если база имеет электропроводность Условные графические изображения на схемах транзисторов разных структур отличаются направлением стрелки, символизирующей эмиттер. У
стрелка эмиттера повернута к базе (рис. 35.27, а у транзистора – от базы (рис. 35.28). Стрелка эмиттера указывает направление тока через транзистор. Схема простейшего усилителя колебаний звуковой частоты показана на рис. 35.29.
Усиливаемый сигнал подается на зажимы “Вход”. Участок коллекторной цепи, к которому подключены телефоны BF, является выходом усилителя. Батарея GB напряжением Резистор является линейным элементом, так как его сопротивление не зависит от тока, а следовательно, зависимость напряжения от тока линейна. Транзистор можно рассматривать как нелинейный элемент, подключенный между отрицательным полюсом батареи питания и телефонами, сопротивление которого изменяется в соответствии с величиной входного сигнала. Если входное напряжение возрастает, то уменьшается сопротивление этого элемента, увеличивается величина тока, протекающего через этот элемент и телефоны. Если входное напряжение уменьшается, то сопротивление этого элемента растет и уменьшается величина тока, текущего через этот элемент и через телефоны. Этот элемент вместе с телефонами образует делитель напряжения, к которому подключена батарея питания. При увеличении (уменьшении) входного напряжения сопротивление нелинейного элемента уменьшается (увеличивается), а следовательно, уменьшается (увеличивается) напряжение на этом элементе. Переменная составляющая этого напряжения рассматривается как выходное напряжение
Чтобы иметь возможность ввести носители тока в коллекторный переход, между базой транзистора и положительным проводом питания включен резистор Толщина слоя базы, разделяющего эмиттер и коллектор, очень мала (0,1...1 мкм), и поэтому большая часть (около 99%) носителей тока (электронов), выходящих из эмиттера, вследствие хаотического теплового движения попадают в область коллекторного перехода. Введение носителей тока через Конденсатор Ко входу усилителя можно подключить звукосниматель электропроигрывателя. Слабый сигнал звуковой частоты, создаваемый звукоснимателем, будет вызывать периодическую перезарядку конденсатора Если в усилителе используется транзистор типа Возможно, у вас уже возник вопрос, как же поддерживается пропускной ток в
Микроэлектроника Микроэл
|
|||||||||||||||||||||
|
Последнее изменение этой страницы: 2017-02-07; просмотров: 683; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.102 (0.011 с.) |