Для коррекции электроэнергии в искажающих системах 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Для коррекции электроэнергии в искажающих системах



Нагрузки существенно влияют на режимы электрических сетей и энергосистемы в целом. Качество электрической энергии в подавляющих случаях зависит от режимов и характера потребителей. Так, например, нелинейные нагрузки вызывают искажения формы кривой напряжения и тока. К ним, в первую очередь, относятся вентильные электроприводы, дуговые электропечи, электротяговые нагрузки и др.

Довольно значительное число нагрузок носит резко переменный характер. Мощность, потребляемая нагрузками, не является постоянной во времени. Они вызывают колебания напряжения и тока, т. е. создают модулированные по амплитуде и фазе режимы напряжений и токов.

Некоторые нагрузки создают несимметрию трехфазных систем. К ним относятся осветительная нагрузка, однофазные тяговые нагрузки, иногда возникают несимметричные режимы в системе электроснабжения трехфазных дугоплавильных печей. Такие нагрузки обладают общим свойством: потребляя электроэнергию из энергосистемы, они частично преобразуют её и передают обратно в сеть. Энергия, поступающая в сеть от генератора, имеет высокое качество: форма кривых напряжения синусоидальна, трехфазные системы напряжений симметричны. Этот поток энергии, распределяющийся по сети и потребляющийся нагрузками, называют основным потоком, а его мощность - мощностью основного потока..

Та часть энергии, которая преобразуется искажающими нагрузками и передается в сеть, определяет искажение и приводит к ухудшению качества электроэнергии. Этот поток и его мощность, распространяющиеся от искажающих нагрузок по энергосистеме, называют вторичными потоком энергии и мощностью. Но, если генератором генерируется напряжение синусоидальной формы, а мощность генератора определяется только первой гармоникой, то источниками высших гармоник являются нелинейные и периодические нагрузки.

Полная мощность в неискажающей системе оценивается по выражению

P н=3 UI =(P а2+ P р2)1/2, (5.20.1)

а в искажающей системе – по выражению

P и=[ P а2+ P р2+ P п2+(3 n +1) P с2+ P и2]1/2, (5.20.2)

где U –напряжение и I – ток в системе, P а – активная и P р – реактивная составляющие энергии, потребляемой из системы, P д – действительная полная мощность искажающей системы, P п – мощность пульсаций, n – коэффициент, учитывающий сопротивление фазных проводов системы, P с – скрытая мощность, а P и – мощность искажения.

В уравнении (5.20.2) P п, P с и P и являются техническими параметрами, сопровождающими передачу P а, приводящие к росту потерь и снижению пропускной способности системы. Однако влияние P п, P с и P и на характер потребления электрической энергии и её качество не всегда учитывается на практике.

На качество электроэнергии неблагоприятно влияют несимметрия и неуравновешенность системы токов, характеризуемые коэффициентами несимметрии и неуравновешенности токов, а также высшие гармоники системы токов. И неравномерность потребления электроэнергии.

При симметричной нагрузке (сопротивления в фазах R А= R B= R C) потребляется активная мощность (5.20.1), передача этой мощности сопровождается потерями в фазных сопротивлениях системы (I А= I B= I C, в нейтрали I Н=0), оцениваемых по выражению

Δ P сим=3 R z I 2, (5.20.3)

а при несимметричной нагрузке сопротивления в фазах R АR BR C, тогда I АI BI CI Н≠0 и потери мощности определяются по

ΔPн.сим= R A I A2+ R B I B2+ R C I C2+ R Н I Н2> Δ P сим, (5.20.4)

хотя значения P а=const и cos φ =1. Причиной увеличения потерь при несимметрии нагрузки является наличие P п и P с, сопровождающих передачу P а.

Влияние высших гармоник, на примере однофазной системы с тиристорами, соединенными по схеме встречно-параллельного включения, отражается при управлении нагрузкой, с синусоидальным напряжением

u = U m sin ωt (5.20.5)

описывается действующим током в нагрузке по выражению

I н2= T -1 U нm R -1 sin 2 ωtdt + U нm R -1 sin 2 ωtdt, (5.20.6)

тогда

P и=(U m2 I i2)1/2/ (5.20.7)

Передача P и приводит к увеличению потерь в сети, а потому является вторым неблагоприятным следствием наличия высших гармоник.

Значение P д оценивается по выражению

P д=(P а+ P р +P и)1/2. (5.20.8)

Характер потребления активной W а= P а T и реактивной W р= P р T энергии на конечном интервале времени T при неравномерности потребления может быть различным. Если потребление энергии осуществляется при постоянном значении тока I i, а сопротивления сети равны 2 R z, то потери энергии на рассматриваемом интервале времени составят

Δ W а=2 R z I i2 T. (5.20.9)

Отсюда вытекают причины недокала ламп в части населенных пунктов и их перегорания в условиях пиковых всплесков напряжения в сети.

С экономической точки зрения наиболее важным показателем характера потребления электрической энергии могут служить потери в сопротивлениях системы, возникающие при передаче энергии потребителю.

Если текущее значение потерь мощности в сопротивлениях системы при данной передаваемой активной мощности для неискажающих систем определяется по выражению

Δ P 1≈1/ cos 2 φ, (5.20.10)

то в искажающей системе с несимметричными и несинусоидальными токами потери в тех же сопротивлениях системы при передаче той же активной мощности определяются по выражению

Δ P 2≈1/ k 2, (5.20.11)

где k – действительный коэффициент мощности, а Δ P 1<<Δ P 2.

При этом на долю реактивной мощности приходится

Δ P = P р2/Pа2, (5.20.12)

на долю мощности пульсаций приходится

Δ P 2п= P п2/Pа2, (5.20.13)

на долю скрытой мощности

Δ P =(3 n +1) P с2/Pа2 (5.20.14)

и на долю мощности искажения

Δ P = P и2/Pа2. (5.20.15)

Радикальным средством сокращения несимметрии в энергосистемах может стать способ и устройство для защиты трехфазной нагрузки от несимметрии фазных токов (рис. 5.20.1 и рис. 5.20.2).

Схема устройства для защиты трехфазной нагрузки от асимметрии фазных токов и человека от поражения электрическим током приведена на рис. 5.20.1, а диаграммы токов в нагрузке, поясняющие принцип оценки степени асимметрии фазных токов в нагрузке, приведены на рис. 5.20.2.

Рис. 5.20.1

Рис. 5.20.2

Устройство защиты трехфазной нагрузки от асимметрии фазных токов и человека от поражения электрическим током содержит магнитный пускатель (МП), соединенный входами с источником питания, нагрузку (Н) и реле защитного отключения (РЗО), соединенное входами (обмотками) пофазно с выходами МП, выходами (обмотками) – пофазно со входами Н, а нормально замкнутыми контактами – последовательно с обмоткой МП. РЗО содержит соленоид из трех идентичных обмоток и нормально замкнутые контакты, управляемые магнитным полем соленоида. Входы соленоида обмоток РЗО пофазно соединены с выходами МП, выходы РЗО соединены пофазно со входами Н, а нормально замкнутые контакты РЗО соединены последовательно с обмоткой МП.

Устройство защиты трехфазной нагрузки от асимметрии фазных токов и человека от поражения электрическим током работает следующим образом. Нормально замкнутые контакты РЗО обеспечивают гальваническую связь обмотки МП через нормально замкнутые контакты его кнопки «Стоп» с источником питания. При нажатии кнопки «Пуск» контакты МП, нормально разомкнутые, замыкаются и Н, через МП (через контакты) и РЗО (через обмотки), соединяется с источником питания. В Н, при симметричности её фазных сопротивлений, протекают равные по модулю фазные токи со сдвигом по фазе на 120º, а асимметрия фазных токов не выходит за пределы поля допуска (| Δ ф ф |<| Δ ф доп |), тогда напряженность магнитного поля в соленоиде РЗО – недостаточна для размыкания контактов РЗО и обесточивания обмотки соленоида МП. При нарушении симметрии фазных токов, т. е. при | фa | = | фb | | фc |, в момент выхода асимметрии за поле допуска (при | Δ ф |>| Δ ф доп |), по причинам неравенства модулей фазных токов (| фa | | фb | | фc |), неравенства фазных сопротивлений нагрузки, неравенства сопротивлений между входом фазы Н и корпусом Н и/или землёй и т. д., В обмотках РЗО протекают несимметричные токи, напряженность магнитного поля в соленоида РЗО достигает уровня, достаточного для срабатывания РЗО, при этом его нормально замкнутые контакты размыкаются, обмотка МП обесточивается, контакты МП размыкаются, а Н автоматически отключается от питающей сети (обесточивается). Нарушение симметричности фазных токов Н, т. е. токов протекающих через соленоид РЗО, независимо от причины её вызвавшей, приводит к обесточиванию Н, а, следовательно, и к её защите, равно как и к защите питающей сети от короткого замыкания, обрыва фазы, утечки на землю, а при достаточной чувствительности РЗО – и к защите человека от поражения электрическим током.

Это устройство обеспечивает: инерционность защитного отключения трехфазной нагрузки (с нейтралью или без таковой) не превышает 0,2 с при модуле асимметрии фазных токов |Δ ф |≤20÷40 мА, что даже при снижении сопротивления изоляции любой из фаз на корпус обеспечивает защиту нагрузки (электропривода) от асимметрии фазных токов и человека от поражения электрическим током в 30 мА / с и более, при допуске (в шахтной угледобыче) в 100–150 мА / с.

Достоинства устройства защиты трехфазной нагрузки от асимметрии фазных токов и человека от поражения электрическим током состоят в автоматическом срабатывании защиты при минимизации аппаратурной избыточности и инерционности отключения нагрузки в случае выхода асимметрии фазных токов в нагрузке за поле допуска, и, как следствие, в повышении надежности в работе. Так, при разнице тока в одной из фазных обмоток реле защитного отключения на десятки миллиампер, нагрузка с задержкой не более 0,2 с. отключается (обесточивается), что позволяет защитить нагрузку от перекоса фазных токов, при нарушении асимметрии сопротивления фазных обмоток нагрузки и утечках тока на корпус оборудования, даже при появлении тока утечки через цепь с сопротивлением в единицы и десятки тысяч Ом, а, следовательно, – защитить человека от токов в десятки мА / с, что в шахтных условиях, в условиях повышенной влажности, обеспечивает защиту человека от поражения током.


ЗАКЛЮЧЕНИЕ

Многочисленные особенности, бифуркации и катастрофы возникают во всех задачах оптимизации, управления и принятия решений.

Из рассмотрения задачи управления в трехмерном (евклидовом) пространстве с препятствием, ограниченном гладкой поверхностью, кратчайший путь из x в y, в обход препятствия, состоит из отрезков прямых и отрезков геодезических (кратчайших) линий на поверхности препятствия. При этом на геометрию кратчайших путей оказывают влияние различные прогибы поверхности препятствия.

Пути в загороженное препятствием пространство слагаются из отрезков прямых, касающихся препятствия, и кривых, продолжения этих путей, образующих пучок (однопараметрическое семейство) геодезических поверхностей. При этом возникает двухпараметрическое семейство путей, характеризующихся как линиями пучка, так и точками срыва касательной, уходящей с поверхности препятствия. Вдоль каждого пути определена функция времени (отсчитываемая от точки x) достижения конечной точки (y), определяемой не однозначно, в силу множества таких путей.

Исследование функции времени приводит к выявлению особенностей, состоящих в образовании складок в общих точках и сборок в особых точках. При подходящем выборе системы координат функция времени приводит к виду T = xy 5/2 в окрестности общей точки особой поверхности y =0, что образует поверхность фронта с ребром возврата, локально задающуюся уравнением x 2= y 5.

Аналогичный результат получается в плоской задаче, где фронты имеют особенность типа x 2= y 5 в точках касательной перегиба.

Фронт пространственной задачи в особой точке (точке сборки гауссова отображения пучка) локально задается уравнениями вида

x = u, y = v 2+ uv, z =(135 v 4+189 uv 2+70 u 2) v 3,

где (u, v) – параметры, (x, y, z) – криволинейные координаты в пространстве с началом в не лежащей на поверхности препятствия точке особого асимптотического луча.

В соответствии с общей стратегией Пуанкаре, граница устойчивости семейства равновесных систем может иметь особенности, сохраняющиеся при малых изменениях параметров. Но область устойчивости всегда располагается выпуклостями наружу, вклиниваясь в область неустойчивости, а материальная точка, двигаясь в потенциальной яме или у потенциального барьера, описывает фазовую траекторию в системе координат, один из параметров которой – её энергия (Е). При этом граница области достижимости состоит из отрезков, а индикатриса управляемой системы может быть и невыпуклой.

Математические модели теории катастроф указывают на общие черты скачкообразного изменения режима системы в ответ даже на плавные изменения, как внешних условий, так и внутреннего состояния их подсистем. К катастрофической потере устойчивости может приводить оптимизация и особенно интенсификация, так для простейшей модели, описываемой, например, уравнением

dx / dh = x (h)– x 2(h)– c,

оптимизация (максимизация) квоты c по показателю h приводит к неустойчивости режима и уничтожению системы. Однако устойчивость не теряется, если ввести обратную связь. В модели с обратной связью

dx / dh = x (h)– x 2(h)– kx (h)

оптимальное значение коэффициента k =0,5. При таком значении k система совершает колебания, не выходящие за область устойчивости.

Следовательно, управление системой без гибкой обратной связи (как положительной, так и отрицательной) всегда приводит к катастрофам.

Памятка. Исключительное право на интеллектуальный промышленно применимый продукт, защищенный патентом, охраняется Законом государства, выдавшего его, и допускает передачу по лицензии, при нарушении этого права виновные в судебном порядке привлекаются к ответственности. Отношения между лицензиатом и лицензиаром регламентируются соответствующим соглашением и регистрируются в патентном ведомстве страны патентования на возмездной основе.

По истечении срока охраны исключительного права на запатентованный интеллектуальный продукт, исключительное право становится всеобщим достоянием человечества, а авторское право на этот продукт является неотчуждаемым вечно.

Защита интеллектуального промышленно применимого продукта престижна и экономически оправдана как для государства, выдавшего патент на него, так и для работодателя и автора.

Прежде всего, необходимо подать заявку на изобретение в патентное ведомство станы гражданства заявителя. При этом допустимо испрашивать либо патент на изобретение (ПИ), либо патент на полезную модель (ПМ). ПИ срок действия – 20 лет, ПМ – 10 лет. После получения приоритетного номера и даты приоритета допустимы публикации, реклама, предложения, выставки, продажа лицензии.

Объем патентной охраны определяется формулой изобретения (её отличительной частью). Первый пункт формулы – основной пункт должен быть сформулирован как можно более сжато, обобщенно. Второй, третий и т. д. пункты – зависимые пункты формулы описывают другие целесообразные и полезные варианты осуществления изобретения. Фигуры чертежей и описания служат для пояснения (толкования) пунктов формулы и поэтому должны ясно описывать конкретный и оптимальный вариант осуществления изобретения, а также его технические преимущества.

После получения номера патента можно сразу приступать к поиску инвесторов, покупателей лицензии. Попытка установить контакты с инвесторами, изготовителями, лицензиатами в разных странах Мира позволяет получить (бесплатную) информацию о шансах изобретения на рынке. После такой проверки желательно незамедлительно (в течение 365 дней с даты приоритета в стране гражданства автора) принять решение о патентовании изобретения за рубежом. При этом изобретение экономически целесообразно патентовать только в тех странах (РСТ, ЕПВ, ЕАПВ, США, ФРГ, Франция, Япония, Китай, …), где ведут свою деятельность конкуренты, а значит там, где есть рынок. Инвесторы готовы делать серьезные предложения только после получения удовлетворительного заключения о поиске (экспертизе по существу).

В странах, где изобретение не запатентовано, его использование нерегламентировано, оно беспрепятственно может применяться, и не преследуется Законом.

С точки зрения прав ПИ и ПМ равнозначны (обладают монопольным правом и запретительным правом).

 


 

БИБЛИОГРАФИЯ



Поделиться:


Последнее изменение этой страницы: 2017-01-23; просмотров: 110; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.160.14 (0.029 с.)