Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация видов выборочного наблюдения

Поиск

Различают индивидуальный, групповой и комбинированный отбор.

При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, например при обследованиях промышленности - предприятия, при обследованиях населения - конкретные люди и т. д. Индивидуальный отбор применяется при организации собственно случайной, механической, типической выборок.

При групповом отборе единицы отбираются группами; ими могут быть, например, бригады, микрорайоны (этот вид отбора свойственен для серийной выборки).

Комбинированный отбор предполагает сочетание индивидуального и группового отбора, например, сначала отбираются группы единиц (групповой отбор), а затем из них случайным образом -конкретные единицы (индивидуальный отбор). В этом случае выборка также называется комбинированной.

Кроме того, каждый из перечисленных способов отбора может быть бесповторным или повторным.

Бесповторным является такой отбор, в результате которого однажды отобранная в выборку единица наблюдения не может быть отобранной из генеральной совокупности во второй раз. При повторном отборе попавшая в выборку единица наблюдения вновь возвращается в совокупность, и ее можно отобрать во второй, третий раз и т. д.

В статистике встречаются разнообразные виды выборок: собственно-случайная выборка, механическая, типическая, серийная, комбинированная. Свои особенности имеет малая выборка.

Вид выборки определяется задачами исследования, полнотой и особенностями информации, которой мы располагаем об объекте наблюдения.

Собственно-случайная выборка. Отбор единиц при использовании собственно случайной выборки производится путем жеребьевки или с использованием таблицы случайных чисел. При этом все единицы совокупности должны иметь равные шансы попасть в выборочную совокупность.

Механическая выборка. Наряду со случайным отбором в практике выборочного наблюдения применяется механический отбор. При этом все единицы генеральной совокупности нумеруются числами от 1 до N, после чего отбирается каждая (N / n)-я единица для обследования. Величина N / n называется шагом, или интервалом, отбора.

Если список единиц в генеральной совокупности составлен в порядке возрастания изучаемого признака, указанный подход может привести к систематической ошибке: начиная отбор с первой единицы из этого интервала получим заниженную оценку генеральной средней, если начать с последней - завышенную. Поэтому целесообразно выбрать начальную точку отсчета (отбора) случайным образом, а затем производить отбор в соответствии с рассчитанным шагом отбора.

Допустим, надо отобрать 50 студентов из 200, обучающихся на первом курсе, методом механической выборки. Для этого необходимо сделать следующее:

1. Определим шаг отбора: (следовательно, необходимо отбирать одного студента из каждых четырех). Порядковый номер, с которого должен начаться отбор, может быть таким: или 1-й, или 2-й, или 3-й или 4-й студент.

2. Определим точку начала отбора по выбранному фрагменту из таблицы случайных чисел. Для этого выберем любой столбец цифр, соответствующий разряду шага отбора (в нашем случае - первому разряду), например последнюю колонку во втором столбце: 6, 5, 0, 3, 1, 6… Следовательно, порядковый номер, с которого должен начаться отбор, равен 3 (это первое число из выписанных, которое нам подходит).

3. Теперь будем отбирать студентов по списку, начиная с 3-го, с шагом, равным 4: 3-го, 7-го, 11-го, 15-го студента и т. д.

Типическая выборка. В случае использования типической выборки совокупность предварительно разбивается на однородные типы или группы, а затем производится случайный (или механический) отбор единиц наблюдения внутри полученных групп. Извлеченная подобным образом выборка будет типической (в литературе она также называется расслоенной, стратифицированной, районированной).

Типическая выборка в статистической практике применяется гораздо чаще, чем остальные виды выборочного наблюдения. Так, при обследованиях населения в зависимости от целей исследования генеральную совокупность расслаивают по возрастному или социальному признаку, типу проживания (городское, сельское населения и т. д.); при обследованиях малых предприятий типизация осуществляется по четырем признакам: территориальному, отраслевому, виду собственности и размеру выручки. Этим достигается однородность единиц внутри групп. Типическая выборка дает более точные результаты.

Серийная (гнездовая) выборка. Если генеральную совокупность можно разделить на одинаковые по объему и однородные группы, то целесообразно осуществлять отбор не единиц, а их серий. После такого отбора внутри серий проводится сплошное обследование.

Например, при оценке качества продукции можно отбирать партии товара, а затем обследовать все входящие в них изделия; при некоторых обследованиях населения отбираются в порядке серий жилые дома, в которых опрашиваются жильцы всех квартир; обследования школьников проводятся путем отбора однотипных школ или конкретных классов, ученики которых подвергаются сплошному опросу, и т. д.

Комбинированные выборки.. Комбинированный отбор широко применяется на практике и представляет собой сочетание разных методов отбора (их комбинацию), например типического с механическим. В этом случае генеральная совокупность разбивается на типические группы на основе ранее выбранного группировочного признака, внутри этих групп единицы наблюдения упорядочиваются, устанавливается шаг отбора, соответствующий необходимой численности выборки, после чего происходит извлечение единиц наблюдения из типических групп на основе механического отбора. Подобная комбинация методов обеспечивает представительство в выборке всех типов единиц наблюдения (за счет применения типического отбора) и сохраняет структуру типических групп по группировочным признакам, обеспечиваемую механическим отбором

Малая выборка. Выборкасчитается малой, если количество объектов, отобранных для выборочного наблюдения, не превышает 20 единиц.

Малые выборки используются в тех ситуациях, когда распределение признака в генеральной совокупности является нормальным или приближается к нему. Только в этих случаях построенные доверительные интервалы или рассчитанные доверительные вероятности будут иметь реальное практическое значение.



Поделиться:


Последнее изменение этой страницы: 2016-12-15; просмотров: 793; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.198.3 (0.007 с.)