Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Строение и функции внутреннего уха. Бегущая волна. Кодирование частоты звука. Механизм трансдукции сигнала в слуховых рецепторах. Роль эндокохлеарного потенциала в слуховой рецепции.

Поиск

Внутреннее ухо - полое костное образование в височной кости, разделенное на костные каналы и полости, содержащие рецепторный аппарат слухового и статокинетического (вестибулярного) анализаторов.

Внутреннее ухо находится в толще каменистой части височной кости и состоит из системы сообщающихся друг с другом костных каналов – костного лабиринта, в котором расположен перепончатый лабиринт. Очертания костного лабиринта почти полностью повторяют очертания перепончатого. Пространство между костным и перепончатым лабиринтом, называемое перилимфатическим, заполнено жидкостью - перилимфой, которая по составу сходна с цереброспинальной жидкостью. Перепончатый лабиринт погружен в перилимфу, он прикреплен к стенкам костного футляра соединительнотканными тяжами и заполнен жидкостью - эндолимфой, по составу несколько отличающейся от перилимфы. Перилимфатическое пространство связано с субарахноидальным узким костным каналом - водопроводом улитки. Эндолимфатическое пространство замкнуто, имеет слепое выпячивание, выходящее за пределы внутреннего уха и височной кости - водопровод преддверия. Последний заканчивается эндолимфатическим мешочком, заложенным в толще твердой мозговой оболочки на задней поверхности пирамиды височной кости.

Костный лабиринт состоит из трех отделов: преддверия, полукружных каналов и улитки. Преддверие образует центральную часть лабиринта. Кзади оно переходит в полукружные каналы, а кпереди - в улитку. Внутренняя стенка полости преддверия обращена к задней черепной ямке и составляет дно внутреннего слухового прохода. Ее поверхность делится небольшим костным гребнем на две части, одна из которых называется сферическим углублением, а другая - эллиптическим углублением. В сферическом углублении расположен перепончатый сферический мешочек, соединенный с улитковым ходом; в эллиптическом - эллиптический мешочек, куда впадают концы перепончатых полукружных каналов. В срединной стенке обоих углублений расположены группы мелких отверстий, предназначенных для веточек вестибулярной части преддверно-улиткового нерва. Наружная стенка преддверия имеет два окна - окно преддверия и окно улитки, обращенные к барабанной полости. Полукружные каналы расположены в трех почти перпендикулярных друг к другу плоскостях. По расположению в кости различают: верхний (фронтальный), или передний, задний (сагиттальный) и латеральный (горизонтальный) каналы.

Костная улитка представляет собой извитой канал, отходящий от преддверия; он спирально 2,5 раза огибает свою горизонтальную ось (костный стержень) и постепенно суживается к верхушке. Вокруг костного стержня спирально извивается узкая костная пластинка, к которой прочно прикреплена продолжающая ее соединительная перепонка - базальная мембрана, составляющая нижнюю стенку перепончатого канала (улиткового хода). Кроме того, от костной спиральной пластинки под острым углом латерально кверху отходит тонкая соединительнотканная перепонка - преддверная (вестибулярная) мембрана, называемая также рейсснеровой мембраной; она составляет верхнюю стенку улиткового хода. Образующееся между базальной и вестибулярной мембраной пространство с наружной стороны ограничено соединительнотканной пластинкой, прилегающей к костной стенке улитки. Это пространство называется улитковым ходом (протоком); оно заполнено эндолимфой. Кверху и книзу от него находятся перилимфатические пространства. Нижнее называется барабанной лестницей, верхнее - лестницей преддверия. Лестницы на верхушке улитки соединяются друг с другом отверстием улитки. Стержень улитки пронизан продольными кольцами, через которые проходят нервные волокна. По периферии стержня тянется спирально ее обвивающий канал, в нем помещаются нервные клетки, образующие спиральный узел улитки). К костному лабиринту из черепа ведет внутренний слуховой проход, в котором проходят преддверно-улитковый и лицевой нервы.

Перепончатый лабиринт состоит из двух мешочков преддверия, трех полукружных протоков, протока улитки, водопроводов преддверия и улитки. Все эти отделы перепончатого лабиринта представляют собой систему сообщающихся друг с другом образований.

Теория бегущей волны - в ответ на звуковой раздражитель внутри улитки возникает быстрая волна, распространяющаяся от основания до верхушки вдоль основной мембраны. Расстояние, которое проходит эта волна по мембране, определяется частотой колебания стремени. Волна от высоких звуков проходит меньшее расстояние и вызывает максимальную деформацию базилярной мембраны, а соответственно и максимальное раздражение волосковых клеток, преимущественно в области основного завитка улитки. Волна от низких звуков способна проходить на большие расстояния и таким образом вызывать деформацию мембраны по всей ее длине. Ощущение высоты звука определяется участком максимальной амплитуды колебаний базилярной мембраны. Чем выше звук, т.е. чем больше частота колебаний, воспринимаемых ухом, тем меньше длина колеблющегося столба жидкости в каналах улитки и тем ближе к основанию улитки и овальному окну максимальная амплитуда колебаний. При низкочастотных звуках максимальная амплитуда колебаний приходится на вершину улитки.

Кодирование частоты звука:

- Резонансная теория Г. Гелъмгольца (1863): учитывая, что базилярная пластинка имеет поперечные коллагеновые волокна, было предположено, что короткие волокна, расположенные ближе к овальному окну, резонируют в ответ на высокочастотные тоны, а длинные, расположенные ближе к геликотреме, резонируют в ответ на низкочастотные тоны. (Основным возражением против этой теории является то, что базилярная мембрана не натянута и резонанс её волокон невозможен.)

- Гидродинамическая теория «бегущей волны» Г. Бекеши (1947). Колебание стремени вызывает в каналах улитки бегущую волну давления, которая направляется к геликотреме. В результате податливости рейснеровой мембраны и базилярной пластинки скорость распространения волны невелика и уменьшается по мере её распространения вплоть до нуля. Поскольку податливость базилярной пластинки нарастает по направлению к геликотреме, место пластинки, где волна полностью затухает (а перед этим имеет максимальную амплитуду) зависит от частоты звука: высокие частоты затухают ближе к овальному окну, низкие – к геликотреме. Частоты менее 800 Гц проходят вдоль всей улитки и затухают около геликотремы.

- В дальнейшем было показано наличие частотной избирательности рецепторов: каждая волосковая клетка имеет высокую чувствительность (низкий порог) к звукам одной частоты и более низкую к другим частотам.

Молекулярные механизмы трансдукции (рецепции) звука по пунктам:

- Волоски рецепторной волосковой клетки отгибаются в сторону, когда упираются в покровную мембрану, поднимаясь к ней вместе с базальной мембраной.

- Из-за этого растягивается клеточная мембрана волоска, и в ней открываются ионные каналы для натрия (Na+). Это механочувствительные ионные каналы (стретч-каналы), открываемые напрямую растяжением клеточной мембраны. Я предлагаю называть такие каналы в рецепторных клетках «стимул-управляемыми» ионными каналами, потому что их открывает стимул — раздражитель. Смотри: Ионные каналы мембраны

- Ионы Nа+ через открывшиеся для них каналы устремляются внутрь клетки.

- Они приносят с собой положительные электрические заряды (+) и вызывают уменьшение электроотрицательности внутри клетки. Это - процесс деполяризации. Электроотрицательность рецепторных волосковых клеток уменьшается, поляризация мембраны снижается, и это означает, что рецепторные клетки переходят в возбуждённое состояние.

- Теперь наступает важный момент, на который следует обратить особое внимание. В ответ на деполяризацию открываются уже другие каналы - потенциал-управляемые ионные каналы для Ca2+. Обратите внимание на то, что в рецепторных клетках в отличие от обычных нейронов появляются «новые действующие лица» - кальциевые каналы, чувствительные к деполяризации. При деполяризационном возбуждении эти каналы открываются и впускают в рецепторную клетку ионы кальция. Собственно, именно для этого, для введения в клетку ионов кальция, и нужна была деполяризация, полученная за счёт открытия стимул-зависимых ионных каналов.

- Итак, через открытые деполяризацией потенциал-зависимые ионные каналы Ca2+ поступает в клетку. Очень важно запомнить, что Cа2+ - это не только ион, но и биологически активное вещество, вторичный мессенджер. И ему предназначена важная роль в работе рецепторной клетки. Кальций связывается со специальным белком и побуждает пузырьки с медиатором двигаться к мембране и выбрасывать медиатор наружу. Без кальция ничего бы не вышло: медиатор не выделился бы.

- И вот теперь происходит самое главное: из рецепторной клетки под действием вошедшего в неё кальция начинает выделяться нейромедиатор. Нейромедиатор — это и есть вещество, передающее возбуждение на связанный с рецепторной волосковой клеткой биполярный нейрон. Как нейромедиатор передаст возбуждение? Он просто заставит биполярный нейрон породить нервный импульс.

Между эндолимфой и перилимфой постоянно существует электрический потенциал, равный примерно +80 мВ, с положительным зарядом внутри средней лестницы и отрицательным — снаружи. Этот потенциал называют эндокохлеарным потенциалом. Он генерируется постоянной секрецией положительных ионов калия в среднюю лестницу. Значение эндокохлеарного потенциала связано с тем, что верхушки волосковых клеток выступают через ретикулярную пластину и омываются эндолимфой средней лестницы, тогда как перилимфа омывает нижерасположенные тела волосковых клеток. Кроме того, волосковые клетки имеют отрицательный внутриклеточный потенциал, равный -70 мВ относительно перилимфы и -150 мВ относительно эндолимфы у верхних их поверхностей, где волоски проходят через ретикулярную мембрану и попадают в эндолимфу. Полагают, что этот высокий электрический потенциал на верхушках стереоцилий дополнительно повышает чувствительность клеток, увеличивая их способность реагировать на самый слабый звук.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 1143; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.183.161 (0.008 с.)