Основные показатели гемодинамики. Взаимоотношение между давлением крови, скоростью Кровотока и сопротивлением току крови. Объёмная и линейная Скорость Кровотока. Условия неразрывности струи. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные показатели гемодинамики. Взаимоотношение между давлением крови, скоростью Кровотока и сопротивлением току крови. Объёмная и линейная Скорость Кровотока. Условия неразрывности струи.



Гемодинамика – это закономерности движения крови по сосудистой системе. Движение крови в последовательно соединенных сосудах, обеспечивающее ее кругооборот называют системной гемодинамикой.

Движение крови в параллельно подключенных к аорте и полым венам сосудистых руслах, благодаря которому органы получают необходимый объем крови, называют регионарной (органной) гемодинамикой.

В соответствии с законами гидродинамики движение крови определяется двумя силами:

- Разностью давлений в начале и конце сосуда, что способствует продвижению жидкости (крови) по сосуду.

- Гидравлическим сопротивлением, которое препятствует току жидкости.

Отношение разности давления к сопротивлению определяет объемную скорость тока жидкости и выражается уравнением: Q = (P1-P2)/R.

Отсюда следует, что количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давлений в ее артериальном и венозном концах и чем меньше сопротивление току крови.

Давление в сосудистой системе создается работой сердца, которое выбрасывает определенный объем крови в единицу времени. Поэтому в артериях давление максимальное.

Так как давление в месте впадения полых вен в сердце близко к 0, то уравнение гидродинамики относительно системного кровотока можно записать в виде: Q = P/R, или Р = Q.R, т.е. давление в устье аорты прямо пропорционально минутному объему крови и величине периферического сопротивления.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда.

Любой из таких сосудов можно сравнить с трубкой, сопротивление которой определяется по формуле: R = 8ln/pr4, т.е. сопротивление сосуда прямо пропорционально его длине и вязкости, протекающей в нем жидкости (крови) и обратно пропорционально радиусу трубки (p - отношение окружности к диаметру). Отсюда следует, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого самый маленький. Однако огромное количество капилляров включено в ток крови параллельно, поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Пульсирующий ток крови, создаваемый работой сердца, выравнивается в кровеносных сосудах, благодаря их эластичности, поэтому ток крови носит непрерывный характер. Для выравнивания пульсирующего тока крови большое значение имеют упругие свойства аорты и крупных артерий.

Во время систолы часть кинетической энергии, сообщенной сердцем крови, переходит в кинетическую энергию движущейся крови, другая ее часть переходит в потенциальную энергию растянутой стенки аорты.

Потенциальная энергия, накопленная стенкой сосуда во время систолы, переходит при его спадении в кинетическую энергию движущейся крови во время диастолы, создавая непрерывный кровоток.

Основными гемодинамическими показателями движения крови по сосудам являются объемная скорость, линейная скорость и скорость кругооборота.

Объемная скорость определяется количеством крови, проходящей через поперечное сечение сосуда за единицу времени. Так как отток крови от сердца соответствует ее притоку к сердцу, то объем крови, протекающий за единицу времени через суммарное поперечное сечение сосудов любого участка кровеносной систем, одинаков.

Объемную скорость кровотока отражает минутный объем кровообращения - то количество крови, которое выбрасывается сердцем за 1 минуту. Минутный объем кровообращения в покое составляет 4,5-5 л и является интегративным показателем. Он зависит от систолического объема (то количество крови, которое выбрасывается сердцем за одну систолу, от 40 до 70 мл) и от частоты сердечных сокращений (70-80 в минуту).

Линейная скорость кровотока – это расстояние, которое проходит частица крови за единицу времени, т.е. это скорость перемещения частиц вдоль сосуда при ламинарном потоке. Кровоток в сосудистой системе в основном носит ламинарный (слоистый) характер. При этом кровь движется отдельными слоями параллельно оси сосуда. Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре она максимальная, а около стенки – минимальная. Это связано с тем, что на периферии особенно велико трение частиц крови о стенку сосуда.

При переходе одного калибра сосуда к другому диаметр сосуда меняется, что приводит к изменению скорости течения крови и возникновению турбулентных (вихревых) движений.

Переход от ламинарного типа движения к турбулентному ведет к значительному росту сопротивления.

Линейная скорость также различна для отдельных участков сосудистой системы и зависит от суммарного поперечного сечения сосудов данного калибра. Она прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносных сосудов: V = Q/pr2. Поэтому линейная скорость меняется по ходу сосудистой системы. Так, в аорте она равна 50-40 см/c; в артериях – 40-20; артериолах – 10-0,1; капиллярах – 0,05; венулах – 0,3; венах – 0,3-5,0; в полых венах – 10-20 см/с. В венах линейная скорость кровотока возрастает, так как при слиянии вен друг с другом суммарный просвет кровеносного русла суживается.

Скорость кругооборота крови характеризуется временем, в течение которого частица крови пройдет большой и малый круги кровообращения. В среднем, это происходит за 20-25 с.

Условие неразрывности струи: при стационарном течении несжимаемой жидкости через любые сечения трубки тока каждую секунду протекают одинаковые объемы жидкости, равные произведению площади сечения на среднюю скорость движения ее частиц.

Условие неразрывности струи: если при течении жидкости линии непрерывны-ламинарное течение. В движущейся жидкости могут возникать завихрения, скорость частиц изменяется, линии претерпевают разрывы, изменяющиеся со временем - турбулентное движения. Уравнение Бернулли: pv2/2+P+pgh=const.

3. Температура тела ("ядра" и "оболочки") человека. Уравнение теплового баланса гомойотермного организма. Химическая и физическая терморегуляция (механизмы теплообразования и теплообмена).

Все живые организмы делятся на: гомойотермные - теплокровные (человек и млекопитающие) и пойкилотермные – холоднокровные.


Образующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.

Теплопродукция и теплоотдача. 
Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела. Суммарная теплопродукция в организме состоит из:
«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях
«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы.

Уровень теплообразования в организме зависит от:

-величины основного обмена, специфического динамического действия принимаемой пищи

-мышечной активности

-интенсивности метаболизма.

Наибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении - «сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.

У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и, прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (~ 3 раза) по сравнению с уровнем основного обмена.

Механизмы теплоотдачи:


- Излучение - способ отдачи тепла в окружающую среду поверхностью тела человек в виде электромагнитных волн инфракрасного диапазона. Количество рассеиваемого тепла прямопропорционально площади поверхности излучения и разности температур кожи и окружающей среды.
При понижении температуры окружающей среды излучение увеличивается, при повышении температуры - понижается.

- Теплопроведение - способ отдачи тепла при соприкосновении тела человека с другими физическими телами. Количество отдаваемого при этом тепла прямопропорционально: разнице средних температур контактирующих тел,лощади контактирующих поверхностей, времени теплового контакта, теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуется низкой теплопроводностью.


- Конвекция - способ теплопередачи, осуществляемый путем переноса тепла движущимися частицами воздуха (или воды). Для конвенции требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Количество отдаваемого конвекцией тепла увеличивается при увеличении скорости движения воздуха (ветер, вентиляция).


Излучение, теплопроведение и конвекция становятся неэффективными способами теплоотдачи при выравнивании средних температур поверхности тела и окружающей среды.

-
Испарение - способ рассеивания организмом тепла в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота или влаги с поверхности кожи или влаги со слизистых дыхательных путей.
У человека постоянно идет потоотделение потовыми железами кожи (36 гр/час при 20 0С) увлажнение слизистых дыхательных путей. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде (костюм - "сауна") усиливает потоотделение (до 50 - 200 гр/час). Испарение (единственный из способов теплоотдачи) возможно при выравнивании температур кожи и окружающей среды при влажности воздуха менее 100 процентов.

Температура тела человека.
 В тех органах и тканях, где обменные процессы протекают с большой скоростью, образуется большое количество тепла.
Решающую роль в перераспределении тепла между тканями с различной теплопродукцией и предупреждении перегревания играет кровь. Обладая высокой теплоемкостью, кровь содействует выравниванию температур в различных частях тела. Подобным образом, за счет изменения скорости кровотока, осуществляется согревание или охлаждение поверхности тела.

Температура поверхностных тканей ниже, чем температура более глубоких тканей, где она составляет 36,7 - 37,0 0С и ее суточные колебания не превышают 1 0С. Это - "гомойотермное ядро ", т.е. ткани, расположенные на глубине 1 см от поверхности тела и глубже. На поверхности же тела суточные колебания температуры больше и она различна на разных участках - "пойкилотермная оболочка " тела человека.
Относительное постоянство температуры сохраняется в большей массе глубоких тканей ("ядро"), если организм находится в среде с температурой 25 - 26 0С - "термонейтральная зона " или " температура комфорта".
При снижении температуры окружающей среды масса глубоких тканей с постоянной температурой ("ядра") уменьшается, при повышении - возрастает.

В течении суток максимальное значение температуры тела наблюдается в 18-20 часов, минимальное - к 4-6 часам утра.

Терморегуляция - это совокупность физиологических и психофизиологических механизмов и процессов, направленных на поддержание относительно постоянства температуры тела. Это достигается с помощью баланса между количеством тепла, рассеиваемого организмом за то же время в окружающую среду.
Восприятие температурных раздражений осуществляется:

- холодовыми рецепторами - количественно расположены больше на поверхности тела, повышает частоту импульсации в ответ на охлаждение и снижают ее в ответ на нагревание.

- тепловыми рецепторами - количественно расположены больше в гипаталамусе, действуют противоположным, чем холодовые рецепторы, образом.


Билет 47



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 1199; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.221.110.87 (0.047 с.)