Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Изменения в системах крови, кровообращения и мышечной деятельности

Поиск

При регулярных занятиях физическими упражнениями, каким-либо видом спорта в крови увеличивается количество эритроцитов и гемоглобина обеспечивающее рост кислородной емкости крови; возрастает количество лейкоцитов и их активность, что повышает сопротивляемость организма к простудным и инфекционным заболеваниям.

Физиологические сдвиги негативного плана (нарастание концент­рации молочной кислоты, солей и т.п.) после непосредственной мы­шечной деятельности у тренированных людей легче и быстрее ликви­дируются с помощью так называемых буферных систем крови благо­даря более совершенному механизму восстановления.

Кровь в организме под воздействием работы сердца находится в по­стоянном движении. Этот процесс происходит под воздействием раз­ности давления в артериях и венах. Артерии — кровеносные сосуды, по которым кровь движется от сердца. Они имеют плотные упругие мышечные стенки. От сердца отходят крупные артерии (аорта, легоч­ная артерия), которые, удаляясь от него, ветвятся на более мелкие. Самые мелкие артерии разветвляются на микроскопические сосуды- капилляры. Они в 10—15 раз тоньше человеческого волоса и густо про­низывают все ткани тела. Например, в 1 мм2 работающей скелетной мышцы действует около 3000 капилляров. Если все капилляры чело­века уложить в одну линию, то ее длина составит 100 000 км. Капил­ляры имеют тонкие полупроницаемые стенки, через которые во всех тканях организма осуществляется обмен веществ. Из капилляров кровь переходит в вены—сосуды, по которым она движется к сердцу. Вены имеют тонкие и мягкие стенки и клапаны, которые пропускают кровь только в одну сторону — к сердцу.

Двигательная активность человека, занятия физическими упраж­нениями, спортом оказывают существенное влияние на развитие и со­стояние сердечно-сосудистой системы. Пожалуй, ни один орган не нуждается столь сильно в тренировке и не поддается ей столь легко, как сердце. Работая с большой нагрузкой при выполнении спортивных упражнений, сердце неизбежно тренируется. Расширяются границы его возможностей, оно приспосабливается к перекачке количества крови намного большего, чем это может сделать сердце нетренирован­ного человека. В процессе регулярных занятий физическими упраж­нениями и спортом, как правило, происходит увеличение массы сер­дечной мышцы и размеров сердца. Так, масса сердца у нетренирован­ного человека составляет в среднем около 300 г, у тренированного — 500 г.

Показателями работоспособности сердца являются частота пуль­са, кровяное давление, систолический и минутный объем крови. Систолический объем в покое у нетренированного — 50—70 мл, у тре­нированного 70—80 мл; при интенсивной мышечной работе соответст­венно — 100—130 мл и 200 мл и более.

Физическая работа способствует расширению кровеносных сосу­дов, снижению тонуса их стенок; умственная работа, так же как и нервно-эмоциональное напряжение, приводит к сужению сосудов, по­вышению тонуса их стенок и даже спазмам. Такая реакция особенно свойственна сосудам сердца и мозга. Длительная напряженная умст­венная работа, частое нервно-эмоциональное напряжение, не сбалан­сированные с активными движениями и с физическими нагрузками, могут привести к ухудшению питания этих важнейших органов, к стойкому повышению кровяного давления, которое, как правило, яв­ляется главным признаком гипертонической болезни. Свидетельствует о заболевании также и понижение кровяного давления в покое (ги­потония), что может быть следствием ослабления деятельности сер­дечной мышцы. В результате специальных занятий физическими уп­ражнениями и спортом кровяное давление претерпевает положитель­ные изменения. За счет более густой сети кровеносных сосудов и вы­сокой их эластичности у спортсменов, как правило, максимальное давление в покое оказывается несколько ниже нормы. Однако пре­дельная частота сердечных сокращений у тренированных людей при физической нагрузке может находиться на уровне 200—240 удар/мин, при этом систолическое давление довольно долго находится на уров­не 200 мм рт. ст. Нетренированное сердце такой частоты сокращений достигнуть просто не может, а высокое систолическое и диастолическое давление даже при кратковременной напряженной деятельности могут явиться причиной предпатологических и даже патологических состояний.

Систолический объем крови это количество крови, выбрасывае­мое левым желудочком сердца при каждом его сокращении. Минут­ный объем крови — количество крови, выбрасываемое желудочком в те­чение одной минуты. Наибольший систолический объем наблюдается при частоте сердечных сокращений от 130 до 180 удар/мин. При час­тоте сердечных сокращений выше 180 удар/мин систолический объем начинает сильно снижаться. Поэтому наилучшие возможности для тренировки сердца имеют место при физических нагрузках, когда частота сердечных сокращений находится в диапазоне от 130 до 180 удар/мин.

В покое кровь совершает полный кругооборот за 21—22 с, при фи­зической работе — за 8 с и менее, при этом объем циркулирующей крови способен возрастать до 40 л/мин. В результате такого увеличе­ния объема и скорости кровотока значительно повышается снабжение тканей организма кислородом и питательными веществами. Особенно полезна тренировка для совершенствования сердечно-сосудистой сис­темы в циклических видах спорта на открытом воздухе.

Особенности дыхания. Затраты энергии на физическую работу обеспечиваются биохимическими процессами, происходящими в мышцах в результате окислительных реакций, для которых постоянно необходим кислород. Во время мышечной работы для увеличения га­зообмена усиливаются функции дыхания и кровообращения. Со­вместная работа систем дыхания, крови и кровообращения по газооб­мену оцениваются рядом показателей: частотой дыхания, дыхательным объемом, легочной вентиляцией, жизненной емкостью легких, кислородным запросом, потреблением кислорода, кислородной емкос­тью крови и т.д.

Частота дыхания. Средняя частота дыхания в покое составляет 15—18 циклов в мин. Один цикл состоит из вдоха, выдоха и дыхатель­ной паузы. У женщин частота дыхания на 1—2 цикла больше. У спорт­сменов в покое частота дыхания снижается до 6—12 циклов в мин за счет увеличения глубины дыхания и дыхательного объема. При физи­ческой работе частота дыхания увеличивается, например, у лыжников и бегунов до 20—28, у пловцов до 36—45 циклов в мин.

Дыхательный объем — количество воздуха, проходящее через лег­кие при одном дыхательном цикле (вдох, выдох, пауза). В покое ды­хательный объем (объем воздуха, поступающего в легкие за один вдох) находится в пределах 200—300 мл. Величина дыхательного объема зависит от степени адаптации человека к физическим нагруз­кам. При интенсивной физической работе дыхательный объем может увеличиваться до 500 мл и более.

Легочная вентиляция — объем воздуха, который проходит через легкие за одну минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое может составлять 5—9 л. При интенсивной физической работе у квалифицированных спортсменов она может до­стигать значительно больших величин (например, при дыхательном объеме до 2,5 л и частоте дыхания до 75 дыхательных циклов в минуту легочная вентиляция составляет 187,5 л, т.е. увеличится в 25 раз и более по сравнению с состоянием покоя).

Жизненная емкость легких (ЖЕЛ) — максимальный объём воздуха, который может выдохнуть человек после максимального вдоха. Сред­ние значения ЖЕЛ составляют у мужчин 3800—4200 мл, у женщин 3000—3500 мл. ЖЕЛ зависит от возраста, массы, роста, пола, состоя­ния физической тренированности человека и от других факторов. У людей с недостаточным физическим развитием и имеющих заболева­ния эта величина меньше средней; у людей, занимающихся физичес­кой культурой, она выше, а у спортсменов может достигать 7000 мл и более у мужчин и 5000 мл и более у женщин. Широко известным ме­тодом определения ЖЕЛ является спирометрия (спирометр — при­бор, позволяющий определить ЖЕЛ).

Кислородный запрос — количество кислорода, необходимое орга­низму в 1 минуту для окислительных процессов в покое или для обес­печения работы различной интенсивности. В покое для обеспечения процессов жизнедеятельности организму требуется 250—300 мл кис­лорода. При интенсивной физической работе кислородный запрос может увеличиваться в 20 и более раз. Например, при беге на 5 км кис­лородный запрос у спортсменов достигает 5—6 л.

Суммарный (общий кислородный) запрос количество кислорода, необходимое для выполнения всей предстоящей работы. Потребление кислорода — количество кислорода, фактически использованного ор­ганизмом в состоянии покоя или при выполнении какой-либо работы. Максимальное потребление кислорода (МПК) — наибольшее количе­ство кислорода, которое может усвоить организм при предельно на­пряженной для него работе.

Способность организма к МПК имеет предел, который зависит от возраста, состояния сердечно-сосудистой системы, от активности про­текания процессов обмена веществ и находится в прямой зависимости от степени физической тренированности. У не занимающихся спортом предел МПК находится на уровне 2—3,5 л/мин. У спортсменов высо­кого класса, особенно занимающихся циклическими видами спорта, МПК может достигать: у женщин — 4 л/мин и более; у мужчин — 6 л/мин и более. Абсолютная величина МПК зависит также от массы тела, поэтому для более точного ее определения относительное МПК рассчитывается на 1 кг массы тела. Для сохранения здоровья необхо­димо обладать способностью потреблять кислород как минимум на 1 кг — женщинам не менее 42 мл/мин, мужчинам — не менее 50 мл/мин.

МПК является показателем аэробной (кислородной) производи­тельности организма.

Когда в клетки тканей поступает меньше кислорода, чем нужно для полного обеспечения потребности в энергии, возникает кислородное голодание, или гипоксия.

Гипоксия наступает по различным причинам. Внешние причины — загрязнение воздуха, подъем на высоту (в горы, полет на самолете) и др. В этих случаях падает парциальное давление кислорода в атмо­сферном и альвеолярном воздухе и снижается количество кислорода, поступающего в кровь для доставки к тканям. Если на уровне моря парциальное давление кислорода в атмосферном воздухе равно 159 мм рт. ст., то на высоте 3000 м оно снижается до 110 мм, а на вы­соте 5 000 м — до 75—80 мм рт. ст.

Внутренние причины возникновения гипоксии зависят от состоя­ния дыхательного аппарата и сердечно-сосудистой системы, проница­емости стенок альвеол и капилляров, количества эритроцитов в крови и процентного содержания в них гемоглобина, от степени проницае­мости оболочек клеток тканей и их способности усваивать доставляе­мый кислород.

При интенсивной мышечной работе, как правило, наступает двига­тельная гипоксия. Чтобы полнее обеспечить себя кислородом в усло­виях гипоксии, организм мобилизует мощные компенсаторные физио­логические механизмы. Например, при подъеме в горы увеличиваются частота и глубина дыхания, количество эритроцитов в крови, процент содержания в них гемоглобина, учащается работа сердца. Если при этом выполнять физические упражнения, то повышенное потребление кислорода мышцами и внутренними органами вызывает дополнитель­ную тренировку физиологических механизмов, обеспечивающих кис­лородный обмен и устойчивость к недостатку кислорода.

Кислородное снабжение организма представляет собой слаженную систему. Гиподинамия расстраивает эту систему, нарушая каждую из составляющих ее частей и их взаимодействие. В результате развивает­ся кислородная недостаточность организма, гипоксия отдельных орга­нов и тканей, которая может привести к расстройству обмена веществ. С этого часто начинается снижение устойчивости организма, его ре­зервных возможностей в борьбе с утомлением и влиянием неблаго­приятных факторов окружающей среды. Особенно страдает от гипок­сии сердечно-сосудистая система, сосуды сердца и мозга. Низкий уро­вень кислородного обмена в стенках сосудов не только снижает их тонус и возможность управления ими со стороны регуляторных меха­низмов, но меняет и обмен веществ, что, в конечном счете, может при­вести к возникновению тяжелых расстройств и заболеваний.

Кислородное питание мышц имеет свои особенности. Известно, что в ритмически работающей мышце кровообращение также ритмичное. Сокращенные мышцы сдавливают капилляры, замедляя кровоток и поступление кислорода. Однако клетки мышц продолжают снабжать­ся кислородом. Доставку его берет на себя миоглобин — дыхательный пигмент мышечных клеток. Роль его важна еще и потому, что только мышечная ткань способна при переходе от покоя к интенсивной рабо­те повышать потребление кислорода в 100 раз.

Таким образом, физическая тренировка, совершенствуя кровообра­щение, увеличивая содержание гемоглобина, миоглобина и скорость отдачи кислорода кровью, значительно расширяет возможности орга­низма в потреблении кислорода.

Органы по-разному переносят гипоксию различной длительности. Кора головного мозга — один из наиболее чувствительных к гипоксии органов. Она первой реагирует на недостаток кислорода. Значительно менее чувствительна к недостаткам кислорода скелетная мускулатура. На ней не отражается даже двухчасовое полное кислородное голода­ние.

Большую роль в регуляции кислородного обмена как в органах и тканях, так и в организме в целом имеет углекислота, являющаяся ос­новным раздражителем дыхательного центра, который располагается в продолговатом отделе головного мозга. Между концентрацией в крови углекислого газа и доставкой кислорода тканям существуют строго определенные соотношения. Изменение содержания углекис­лого газа в крови оказывает влияние на центральные и периферичес­кие регуляторные механизмы, обеспечивающие улучшение снабжения организма кислородом, и служит мощным регулятором в борьбе с ги­поксией.

Систематическая тренировка средствами физической культуры и спорта не только стимулирует развитие сердечно-сосудистой и дыха­тельной системы, но и способствует значительному повышению уров­ня потребления кислорода организмом в целом. Наиболее эффективно совместную функцию взаимоотношения дыхания, крови, кровообра­щения развивают упражнения циклического характера, выполняемые на свежем воздухе. Однако следует помнить, насколько важно повы­шать возможности организма к потреблению кислорода, настолько же важно для него вырабатывать устойчивость к гипоксии. Это качество также совершенствуется в процессе тренировки, с помощью специаль­ных процедур, путем создания искусственных условий гипоксии. Наи­более доступный способ — упражнение с задержкой дыхания. Систе­матически физические нагрузки определенной мощности, связанные с анаэробной производительностью, обусловливают возникновение в тканях гипоксического состояния, которое с помощью функциональ­ных систем организма при определенных условиях ликвидируется, тем самым эти системы, защищая организм, сами тренируются и со­вершенствуются. В результате положительный тренировочный эф­фект в борьбе с гипоксией формирует устойчивость тканей организма к гипоксии.

Итак, физические нагрузки оказывают двойной тренирующий эффект: повышают устойчивость к кислородному голоданию и, увеличи­вая мощность дыхательной и сердечно-сосудистой систем, способству­ют лучшей утилизации кислорода.

Дыхательная система может управляться человеком произвольно. Необходимо иметь в виду некоторые приемы управления. Специалисты рекомендуют в условиях относительного покоя дышать через нос и только при интенсивной физической работе дышать одновременно и через рот; во всех случаях выпрямления тела делать вдох, при сгиба­нии — выдох; в процессе выполнения циклических движений ритм дыхания приспосабливать к ритму движения, акцентируя внимание на выдохе; избегать необоснованных задержек дыхания и натуживания.



Поделиться:


Последнее изменение этой страницы: 2016-06-28; просмотров: 889; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.77.73 (0.01 с.)