Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Средства физической культуры, обеспечивающие устойчивость к умственной и физической работоспособности

Поиск

Основное средство физической культуры - физические упражнения. Существует физиологическая классификация упражне­ний, в которой вся многообразная мышечная деятельность объединена в отдельные группы упражнений по физиологическим признакам.

Устойчивость организма к неблагоприятным факторам зависит от врожденных и приобретенных свойств. Она весьма подвижна и подда­ется тренировке, как средствами мышечных нагрузок, так и различны­ми внешними воздействиями (температурными колебаниями, недо­статком или избытком кислорода, углекислого газа). Отмечено, напри­мер, что физическая тренировка путем совершенствования физиоло­гических механизмов повышает устойчивость к перегреванию, переох­лаждению, гипоксии, действию некоторых токсических веществ, снижает заболеваемость и повышает работоспособность. Тренированные лыжники при охлаждении их тела до 35°С сохраняют высокую рабо­тоспособность. Если нетренированные люди не в состоянии выпол­нять работу при подъеме их температуры до 37-38˚С, то тренирован­ные успешно справляются с нагрузкой даже тогда, когда температура их тела достигает 39˚С и более.

У людей, которые систематически и активно занимаются физичес­кими упражнениями, повышается психическая, умственная и эмоцио­нальная устойчивость при выполнении напряженной умственной или физической деятельности.

К числу основных физических (или двигательных) качеств, обеспе­чивающих высокий уровень физической работоспособности человека, относят силу, быстроту и выносливость, которые проявляются в опре­деленных соотношениях в зависимости от условий выполнения той или иной двигательной деятельности, ее характера, специфики, про­должительности, мощности и интенсивности. К названным физичес­ким качествам следует добавить гибкость и ловкость, которые во многом определяют успешность выполнения некоторых видов физи­ческих упражнений. Многообразие и специфичность воздействия уп­ражнений на организм человека можно понять, ознакомившись с фи­зиологической классификацией физических упражнений (с точки зрения спортивных физиологов). В основу ее положены определенные физио­логические классификационные признаки, которые присущи всем видам мышечной деятельности, входящим в конкретную группу. Так, по характеру мышечных сокращений работа мышц может носить ста­тический или динамический характер. Деятельность мышц в условиях сохранения неподвижного положения тела или его звеньев, а также упражнение мышц при удержании какого-либо груза без его переме­щения характеризуется как статическая работа (статическое уси­лие). Статическими усилиями характеризуется поддержание разнооб­разных поз тела, а усилия мышц при динамической работе связаны с перемещениями тела или его звеньев в пространстве.

Значительная группа физических упражнений выполняется в стро­го постоянных (стандартных) условиях, как на тренировках, так и на соревнованиях; двигательные акты при этом производятся в опреде­ленной последовательности. В рамках определенной стандартности движений и условий их выполнения совершенствуется выполнение конкретных движений с проявлением силы, быстроты, выносливости, высокой координации при их выполнении.

Есть также большая группа физических упражнений, особенность которых в нестандартности, непостоянстве условий их выполнения, в меняющейся ситуации, требующей мгновенной двигательной реакции (единоборства, спортивные игры). Две большие группы физичес­ких упражнений, связанные со стандартностью или нестандартностью движений, в свою очередь, делятся на упражнения (движения) цикли­ческого характера (ходьба, бег, плавание, гребля, передвижения на коньках, лыжах, велосипеде и т.п.) и упражнения ациклического харак­тера (упражнения без обязательной слитной повторяемости опреде­ленных циклов, имеющих четко выраженные начало и завершение движения: прыжки, метания, гимнастические и акробатические эле­менты, поднимание тяжестей). Общее для движений циклического ха­рактера состоит в том, что все они представляют работу постоянной и переменной мощности с различной продолжительностью. Многообраз­ный характер движений не всегда позволяет точно определить мощ­ность выполненной работы (т.е. количество работы в единицу време­ни, связанное с силой мышечных сокращений, их частотой и амплиту­дой), в таких случаях используется термин «интенсивность». Предель­ная продолжительность работы зависит от ее мощности, интенсивнос­ти и объема, а характер выполнения работы связан с процессом утом­ления в организме. Если мощность работы велика, то длительность ее мала вследствие быстро наступающего утомления, и наоборот. При ра­боте циклического характера спортивные физиологи различают зону максимальной мощности (продолжительность работы не превышает 20-30 с, причем утомление и снижение работоспособности большей частью наступает уже через 10-15 с); субмаксимальной (от 20-30 до 3-5 с); большой (от 3-5 до 30-50 мин) и умеренной (продолжитель­ность 50 мин и более).

Особенности функциональных сдвигов организма при выполнении различных видов циклической работы в различных зонах мощности определяет спортивный результат. Так, например, основной характер­ной чертой работы в зоне максимальной мощности является то, что де­ятельность мышц протекает в бескислородных (анаэробных) услови­ях. Мощность работы настолько велика, что организм не в состоянии обеспечить ее совершение за счет кислородных (аэробных) процессов. Если бы такая мощность достигалась за счет кислородных реакций, то органы кровообращения и дыхания должны были обеспечить доставку к мышцам свыше 40 л кислорода в 1 мин. Но даже у высококвалифи­цированного спортсмена при полном усилении функции дыхания и кровообращения потребление кислорода может только приближаться к указанной цифре. В течение же первых 10-20 с работы потребление кислорода в пересчете на 1 мин достигает лишь 1-2 л. Поэтому работа максимальной мощности выполняется «в долг», который ликвидиру­ется после окончания мышечной деятельности. Процессы дыхания и кровообращения во время работы максимальной мощности не успевают усилиться до уровня, обеспечивающего нужное количество кисло­рода, чтобы дать энергию работающим мышцам. Во время спринтер­ского бега делается лишь несколько поверхностных дыханий, а иногда такой бег совершается при полной задержке дыхания. При этом аффе­рентные и эфферентные отделы нервной системы функционируют с максимальным напряжением, вызывая достаточно быстрое утомление клеток центральной нервной системы. Причина утомления самих мышц связана со значительным накоплением продуктов анаэробного обмена и истощением энергетических веществ в них. Главная масса энергии, освобождающаяся при работе максимальной мощности, обра­зуется за счет энергии распада АТФ и КФ. Кислородный долг, ликви­дируемый в период восстановления после выполненной работы, ис­пользуется на окислительный ресинтез (восстановление) этих ве­ществ.

Снижение мощности и увеличение продолжительности работы связано с тем, что помимо анаэробных реакций энергообеспечения мы­шечной деятельности разворачиваются также и процессы аэробного энергообразования. Это увеличивает (вплоть до полного удовлетворе­ния потребности) поступление кислорода к работающим мышцам. Так, при выполнении работы в зоне относительно умеренной мощнос­ти (бег на длинные и сверхдлинные дистанции) уровень потребления кислорода может достигать примерно 85% максимально возможного. При этом часть потребляемого кислорода используется на окисли­тельный ресинтез АТФ, КФ и углеводов. При длительной (иногда многочасовой) работе умеренной мощности углеводные запасы орга­низма (гликоген) значительно уменьшаются, что приводит к сниже­нию содержания глюкозы в крови, отрицательно сказываясь на дея­тельности нервных центров, мышц и других работающих органов. Чтобы восполнить израсходованные углеводные запасы организма в процессе длительных забегов и проплывов, предусматривается специ­альное питание растворами сахара, глюкозы, соками.

Ациклические движения не обладают слитной повторяемостью циклов и представляют собою стереотипно следующие фазы движе­ний с четким завершением. Чтобы выполнить их, необходимо про­явить силу, быстроту, высокую координацию движений (движения си­лового и скоростно-силового характера). Успешность выполнения этих упражнений связана с проявлением либо максимальной силы, либо скорости, либо сочетания того и другого и зависит от необходи­мого уровня функциональной готовности систем организма в целом.

К средствам физической культуры относятся не только физичес­кие упражнения, но и оздоровительные силы природы (солнце, воздух и вода), гигиенические факторы (режим труда, сна, питания, санитарно-гигиенические условия). Использование оздоровительных сил природы способствует укреплению и активизации защитных сил ор­ганизма, стимулирует обмен веществ и деятельность физиологических систем и отдельных органов. Чтобы повысить уровень физической и умственной работоспособности, необходимо бывать на свежем возду­хе, отказаться от вредных привычек, проявлять двигательную актив­ность, заниматься закаливанием. Систематические занятия физичес­кими упражнениями в условиях напряженной учебной деятельности снимают нервно-психические напряжения, а систематическая мышеч­ная деятельность повышает психическую, умственную и эмоциональ­ную устойчивость организма при напряженной учебной работе.

Контрольные вопросы

1.Понятие о социально-биологических основах физической культуры.

2.Естественно - научные основы физической культуры и спорта.

3.Принцип целостности организма и его единства с окружающей средой.

4.Саморегуляция и самосовершенствование организма.

5.Общее представление о строении тела человека.

6.Перечислите виды тканей организма и их свойства общего и специфического характера.

7.Три основных полости туловища организма человека. Назовите, какие органы в них расположены.

8.Понятие об органе и системе органов.

9.Форма и функции костей скелета человека.

10.Из чего состоит скелет человека.

11.Позвоночник. Его отделы и функции.

12.Понятие о грудной клетке и ее функциях.

13.Общее представление о строении черепа и его функциях.

14.Понятие о суставах, связках и сухожилиях.

15.Представление об опорно-двигательном аппарате.

16.Представление о мышечной системе (функции поперечно-полосатой и гладкой мускулатуры).

17.Представление о строении мышечной ткани.

18.Роль мышц туловища, головы, шеи, верхних и нижних конечностей.

19.Общее представление об энергообеспечении мышечного сокращения.

20.Представление о дыхательной системе.

21.Представление о пищеварительной системе.

22.Представление о выделительной системе.

23.ЦНС, ее отделы и функции.

24.Строение и функции спинного мозга.

25.Головной мозг (строение и функции).

26.Вегетативная нервная система и соматическая нервная система.

27.Симпатическая и парасимпатическая нервная система.

28.Понятие о рецепторах.

29.Анализаторы.

30.Железы внутренней секреции.

31.Внешняя среда, ее природные, биологические и социальные факторы.

32.Гомеостаз.

33.Экологические факторы и их влияние на организм.

34.Понятие о функциональной активности человека.

35.Характеристика умственного труда.

36..Характеристика физического труда.

37.Двигательный режим, сочетание труда и отдыха. Виды отдыха.

38.Взаимосвязи физической и умственной деятельности человека.

39.Понятие об утомлении при физической и умственной деятельности.

40.Процесс восстановления.

41.Представление о биологических ритмах человека.

42.Гипокинезия и гиподинамия.

43.Средства физической культуры.

44.Физиологическая классификация физических упражнений.


 

МАТЕРИАЛ ИЗ 5 ГЛАВЫ

 

Проявления тренирован­ности при предельно напряженной работе

Нагрузка, выполняемая на тренировках и соревнованиях, не бывает стандартной. На соревнованиях каждый стремится достичь максимально возможной для него интен­сивности работы. Физиологические исследования, проводимые при работе на пределе функциональных возможностей организма, могут дать представление его физиологических возможностях.

Применяются три, варианта исследований при такой работе. Пер­вый вариант состоит в регистрации физиологических изменений во время выполнения спортивного упражнения в условиях соревнования или близких к ним. Физиологические функции регистрируются во время этой работы, или сразу после нее, или на протяжении всего последующего восстановительного периода.

Второй вариант представляет собой лабораторную работу в виде бега на месте, или работу на велоэргометре, или бег на тредбане. Ис­пытуемый совершает работу, постепенно усиливая ее мощность с целью максимальной мобилизации всех функций организма, обеспе­чивающих предельную работу. К концу такого усиления испытуемый уже работает в полную силу своих возможностей. В это время и про­изводят необходимые физиологические замеры, которые характеризу­ют предельную мобилизацию физиологических возможностей орга­низма спортсмена.

Третий вариант заключается в том, что испытуемый совершает ра­боту, строго стандартную по мощности. Однако продолжительность
работы не ограничивается. Она производится до тех пор, пока испытуемый может поддерживать заданную мощность (заданное число оборотов педалей, темп бега при определенной высоте подъема бедра, скорость бега или плавания за лидером). Работа прекращается в тот момент, когда ее мощность или скорость передвижения начинают не­отвратимо/падать и испытуемый даже при всем напряжении своих сил вынужден отказаться от дальнейшего выполнения работы в данных условиях. Иначе говоря, с целью характеристики тренированности ис­следуется выполнение работы «до отказа».

Результаты исследований при предельной работе спортсмена резко отличается от тех, которые были получены при изучении стандартной работы. При предельной работе отмечалось обратное: у тренирован­ных во многих физиологических показателях были большие сдвиги, чем у нетренированных. Это выражается в том, что тренированный

расходует при предельной работе больше энергии, чем нетренирован­ный, а объясняется тем, что сама работа, произведенная тренирован­ным, превышает величину работы, которую может выполнить нетре­нированный. Экономизация проявляется в несколько меньшем расхо­де энергии на единицу работы, однако весь объем работы у трениро­ванного при предельной работе настолько велик, что общая величина затраченной энергии оказывается очень большой.

Преобладание расхода энергии у тренированных особенно заметно в тех случаях, когда выполняемая работа не отличается сложностью. Вращение педалей велоэргометра сопровождается почти одинаковым расходом энергии у мастера спорта и спортсмена третьего разряда. Между тем различия в количестве работы, которую может выполнить на велоэргометре мастер или новичок, очень велики, что и определяет различия в величинах энергетических трат.

Весьма тесно связаны с тренированностью спортсмена показатели максимального потребления кислорода. Чем тренированнее спортсмен, тем большее количество кислорода он в состоянии потребить во время предельной работы. Самые высокие показатели (5,5—6,5 л/мин, или 80—90 мл/кг) зарегистрированы у представителей циклических видов спорта — мастеров международного класса, находящихся в момент ис­следования в состоянии наилучшей спортивной формы. Несколько меньшие цифры — около 4,5—5,5 л/мин, или 70—80 мл/кг, — отмеча­ются у менее подготовленных мастеров спорта и некоторых первораз­рядников. У спортсменов второго, третьего разряда величина макси­мального потребления кислорода достигает приблизительно 3,5— 4,5 л/мин, или 60—70 мл/кг. Показатель ниже 3 л/мин, или 50 мл/кг, характеризует низкий уровень тренированности.

Такая тесная связь между максимальным потреблением кислорода и тренированностью наблюдается в тех видах спорта, которые предъ­являют значительные требования к снабжению мышц кислородом и характеризуются высоким уровнем аэробных реакций. Для специали­зирующихся в работе максимальной мощности связь между трениро­ванностью и максимальным потреблением кислорода очень мала, так как для них более характерна связь между тренированностью и мак­симальным кислородным долгом, отражающим возможный объем анаэ­робных процессов организме. У таких спортсменов (например, бегу­нов на короткие и средние дистанции) максимальный кислородный долг может достирать 25 л, если это спортсмены очень высокого клас­са. У менее тренированных спортсменов максимальный кислородный долг не превышает 10—15 л.

Большая величина максимального потребления кислорода у высокотренированных спортсменов тесно связана с большими величинами объема дыхания и кровообращения. Максимальное потребление кисло­рода, равное 5—6 л/мин, сопровождается легочной вентиляцией, до­стигающей 200 л в 1 мин, при частоте дыхания, превышающей 60 в 1 мин, и глубине каждого дыхания, равной более 3 л. Иначе говоря, максимальное потребление кислорода сопровождается максимальной интенсивностью легочного дыхания, которое у высокотренированных спортсменов достигает значительно больших величин, чем у малотре­нированных. Соответственно этому максимальных величин достигает минутный объем крови. Для того чтобы транспортировать от легких в мышцы 5—6 л кислорода в 1 мин, сердце должно перекачивать в каж­дую минуту около 35 л крови. Частота сердечных сокращений при этом составляет 180—190 в 1 мин, а систолический объем крови может превышать 170 мл. Естественно, что столь резко возрастающая ско­рость кровотока сопровождается высоким подъемом артериального давления, достигающим 200—250 мм рт. ст.

Если выполняемая предельная работа характеризуется высокой интенсивностью анаэробных реакций, то она сопровождается накопле­нием продуктов анаэробного распада. Оно больше у тренированных спортсменов, чем у нетренированных. Например, концентрация мо­лочной кислоты в крови при предельной работе может доходить у тре­нированных спортсменов до 250—300 мг %. Соответственно этому общие биохимические сдвиги в крови и моче у тренированных спорт­сменов при предельной работе значительно большие, чем у нетрени­рованных.

Понижение уровня сахара в крови, являющееся одним из основных признаков утомления, наиболее выражено при очень длительной ра­боте у хорошо тренированных спортсменов. Даже при величине содер­жания сахара в крови ниже 50 мг % тренированной марафонец еще долго способен сохранять высокий темп бега, в то время как Нетрени­рованный при таком низком содержании сахара в крови вынужден сойти с дистанции.

Значительные изменения в химизме крови во время работы гово­рят о том, что центральная нервная система тренированного организма обладает устойчивостью к действию резко измененного состава внут­ренней среды. Организм высокотренированного спортсмена обладает повышенной сопротивляемостью к действию факторов утомления, иначе говоря, большой выносливостью. Он сохраняет работоспособ­ность при таких условиях, при которых нетренированный организм вынужден прекратить работу.

Таким образом, функциональные показатели тренированности при выполнении предельно напряженной работы в циклических видах двигательной деятельности обусловливаются мощностью работы. Так, из приведенных данных видно, что при работе субмаксимальной и максимальной мощности наибольшее значение имеют анаэробные процессы энергообеспечения, т.е. способность адаптации организма к работе при существенно измененном составе внутренней среды в кис­лую сторону. При работе большой и умеренной мощности главным фактором результативности является своевременная и удовлетворяю­щая доставка кислорода к работающим тканям. Аэробные возможнос­ти организма при этом должны быть очень высоки.

При предельно напряженной мышечной деятельности происходят значительные изменения практически во всех системах организма, и это говорит о том, что выполнение этой напряженной работы связано с вовлечением в ее реализацию больших резервных мощностей орга­низма, с усилением обмена веществ и энергии.

Таким образом, организм человека, систематически занимающего­ся активной двигательной деятельностью, в состоянии совершить более значительную по объему и интенсивности работу, чем организм человека, не занимающегося ею. Это обусловлено систематической ак­тивизацией физиологических и функциональных систем организма, вовлечением и повышением их резервных возможностей, своего рода тренированностью процессов их использования и пополнения. Каж­дая клетка, их совокупность, орган, система органов, любая функцио­нальная система в результате целенаправленной систематической упражняемости повышают показатели своих функциональных возмож­ностей и резервных мощностей, обеспечивая в итоге более высокую работоспособность организма за счет того же эффекта упражняемости, тренированности мобилизации обменных процессов.

Обмен веществ и энергии

Основной признак живого организма — обмен веществ и энергии. В организме непрерывно идут пластические процессы, про­цессы роста, образования сложных веществ, из которых состоят клет­ки и ткани. Параллельно происходит обратный процесс разрушения. Всякая деятельность человека связана с расходованием энергии. Даже во время сна многие органы (сердце, легкие, дыхательные мышцы) расходуют значительное количество энергии. Нормальное протекание этих процессов требует расщепления сложных органических веществ, так как они являются единственными источниками энергии для жи­вотных и человека. Такими веществами являются белки, жиры и угле­воды. Большое значение для нормального обмена веществ имеют также вода, витамины и минеральные соли. Процессы образования в клетках организма необходимых ему веществ, извлечение и накопление энергии (ассимиляция) и процессы окисления и распада органи­ческих соединений, превращение энергии и ее расход (диссимиляция) на нужды жизнедеятельности организма между собой тесно перепле­тены, обеспечивают необходимую интенсивность обменных процессов в целом и баланс поступления и расхода веществ и энергии.

Обменные процессы протекают очень интенсивно. Почти половина тканей тела обновляется или заменяется полностью в течение трех ме­сяцев. За 5 лет учебы роговица глаза у студента сменяется 350 раз, ткани желудка обновляются 500 раз, эритроцитов вырабатывается до 300 млрд ежедневно, в течение 5—7 дней половина всего белкового азота печени заменяется.

Обмен белков

Белки — необходимый строительный мате­риал протоплазмы клеток. Они выполняют в организме специальные функции. Все ферменты, многие гормоны, зрительный пурпур сетчатки, переносчики кислорода, защитные вещества крови являются белковыми телами. Белки сложны по своему строению и весьма специфичны. Белки, содержащиеся в пище, и белки в составе нашего тела значительно отличатся по своим качествам. Если белок извлечь из пищи и ввести непосредственно в кровь, то человек может погибнуть. Белки состоят из белковых элементов — аминокислот, ко­торые образуются при переваривании животного и растительного белка и поступают в кровь из тонкого кишечника. В состав клеток жи­вого организма входит более 20 типов аминокислот. В клетках непре­рывно протекают процессы синтеза огромных белковых молекул, со­стоящих из цепочек аминокислот. Сочетание этих аминокислот (всех или части из них), соединенных в цепочки в разной последовательнос­ти, и обусловливает бесчисленное количество разнообразных белков. Аминокислоты делятся на незаменимые и заменимые. Незаменимы­ми называются те, которые организм получает только с пищей. Заме­нимые могут быть синтезированы в организме из других аминокислот. По содержанию аминокислот определяется ценность белков пищи. Вот почему белки, поступающие с пищей, делятся на две группы: пол­ноценные, содержащие все незаменимые аминокислоты, и неполноцен­ные, в составе которых отсутствуют некоторые незаменимые амино­кислоты. Основным источником полноценных белков служат живот­ные белки. Растительные белки (за редким исключением) неполно­ценные.

В тканях и клетках непрерывно идет разрушение и синтез белко­вых структур. В условно здоровом организме взрослого человека ко­личество распавшегося белка равно количеству синтезированного. Так как баланс белка в организме имеет большое практическое значение, разработано много методов его изучения.

Баланс белка определяется разностью между количеством белка, поступившего с пищей, и количеством белка, подвергшегося за это время разрушению. Количество поступившего белка определить не трудно: для этого надо определить количество азота в пище. В состав белков непременно входит азот, которого нет в углеводах и жирах. Следовательно, зная количество азота, введенного в организм с пищей, и количество выделенного организмом азота, можно определить коли­чество утилизированного организмом белка. О количестве белка, под­вергшегося в организме разрушению, судят по количеству азота, вы­деленного организмом с экскрементами.

В относительно здоровом организме человека среднего возраста ко­личество введенного азота равно количеству выделенного. Такое соот­ношение называется азотистым равновесием. В организме белок не откладывается про запас, не депонируется. Поэтому при тяжелых фи­зических нагрузках, болезнях или голодании в организме может идти процесс распада собственных белков. Количество выведенного азота при этом больше, чем количество поступившего. Это состояние назы­вается отрицательным азотистым балансом.

В некоторых случаях в организме синтез белка превышает его рас­пад. Количество выведенного азота при этом меньше количества по­ступающего. Такое состояние называется положительным азотистым балансом. Положительный азотистый баланс наблюдается у детей, бе­ременных женщин, выздоравливающих больных.

Функции белка не ограничиваются пластическим значением для организма. Растворенные в плазме белки образуют коллоидный рас­твор крови, который взаимодействует с основным веществом соедини­тельной ткани через тканевую жидкость. Движение веществ сквозь стенки капилляров — сложное сочетание процессов диффузии, фильт­рации и осмоса. Поскольку концентрация белков в крови выше, чем в тканевой жидкости, осмотическое давление в крови также выше. Ос­мотическое давление белков и других коллоидов, называемое онкотическим, удерживает воду в крови. Если онкотическое давление крови очень низкое (например, при длительном белковом голодании), обрат­ное проникновение тканевой жидкости в капилляры уменьшается и в тканях могут возникнуть отеки. Белки плазмы крови выполняют роль буферных систем, поддерживающих рН крови, а в виде гемоглобина участвуют в транспорте газов. Кроме того, велика и регуляторная роль белков в обмене углеводов и жиров. Входя в состав ферментов и гор­монов, белки определяют ход химических превращений в организме и интенсивность обмена веществ. Существенна роль белка в функции мышц. Белок также является энергетическим веществом (при окисле­нии в организме может образовываться 4,1 ккал, а в лабораторных ус­ловиях еще дополнительно 1,3 ккал).

Регуляция белкового равновесия осуществляется гуморальным и нервным путями (через гормоны коры надпочечников и гипофиза, промежуточный мозг).

Содержание белка в пищевых продуктах различно. К примеру, в свежем мясе и рыбе 18 г на 100 г продукта, в бобовых — 18, хлебе — 7, сыре, твороге — 20.

Считается, что норма потребления белка в день для взрослого че­ловека составляет 80—100 г. Если его поступает больше, то лишний белок идет на покрытие энергетических затрат организма. При этом он может трансформироваться в углеводы и другие соединения. При больших физических нагрузках потребность организма в белке может доходить до 150 г/сут.

Азот — один из конечных продуктов окисления белка. Однако азот выделяется не в свободном состоянии, а в виде соединений с водоро­дом — NH3. Это соединение (аммиак) вредно для организма. Аммиак обезвреживается в печени, превращаясь в мочевину, которая выводит­ся с мочой.

Обмен углеводов

Углеводы делятся на простые исложные. Простые углеводы называются моносахари­дами. Большинство из них, например, глю­коза, имеет формулу С6Н12О6. Моносахари­ды хорошо растворяются в воде и поэтому быстро всасываются из ки­шечника в кровь. Сложные углеводы построены из двух или многих молекул моносахаридов. Соответственно они называются дисахаридами и полисахаридами, К дисахаридам относятся свекловичный сахар, молочный, солодовый и некоторые другие. Они хорошо растворяются в воде, но из-за большой величины молекул почти не всасываются в кишечнике. К полисахаридам относятся гликоген, крахмал, клетчатка. Они не растворимы в воде и могут всасываться в кровь лишь после расщепления до моносахаридов.

Углеводы поступают в организм с растительной и частично с жи­вотной пищей. Они также синтезируются в организме из продуктов расщепления аминокислот и жиров. При избыточном поступлении превращаются в жиры и в таком виде откладываются в организме.

Значение углеводов. Углеводы — важная составная часть живого организма. Однако их в организме меньше, чем белков и жиров, они составляют всего лишь около 2% сухого вещества тела.

Углеводы в организме главный источник энергии. Они всасывают­ся в кровь в основном в виде глюкозы. Это вещество разносится по тканям и клеткам организма. В клетках глюкоза при участии ряда фер­ментов окисляется до Н2О и СО2г Одновременно освобождается энер­гия (4,1 ккал), которая используется организмом при реакциях синте­за или при мышечной работе.

Клетки головного мозга в отличие от других клеток организма не могут депонировать глюкозу. Кроме того, если уровень глюкозы в крови падает ниже 60—70 мг % (т.е. 60—70 мг на 100 мл крови), то почти прекращается переход глюкозы из крови в нервные клетки. При таком низком содержании сахара в крови (гипогликемия) появляются судороги, потеря сознания (гипогликемический шок) и наступает уг­роза жизни. У практически здорового человека автоматически поддер­живается оптимальный уровень глюкозы в крови (80—120 мг %).

Если с пищей поступает недостаточное количество сахара, то он синтезируется из жиров и белков. Излишки сахара (после приема пищи, богатой углеводами) превращаются в печени и мышцах в гли­коген и там откладываются (депонируются). Этот процесс регулиру­ется гормоном поджелудочной железы — инсулином. При нарушении функции поджелудочной железы развивается тяжелое заболевание — диабет. В этой ситуации сахар не преобразуется в гликоген, и количе­ство его в крови может достигать 200—400 мг %. Такое высокое содер­жание сахара в крови (гипергликемия) приводит к тому, что почки на­чинают выделять сахар с мочой. За день больной может терять таким путем до 500 г сахара.

Значение углеводов при мышечной деятельности. Запасы углево­дов особенно интенсивно используются при физической работе. Од­нако полностью они никогда не исчерпываются. При уменьшении за­пасов гликогена в печени его дальнейшее расщепление прекращается, что ведет к уменьшению концентрации глюкозы в крови. Мышечная деятельность в этих условиях продолжаться не может. Уменьшение содержания глюкозы в крови является одним из факторов, способст­вующих развитию утомления. Поэтому для успешного выполнения длительной и напряженной работы необходимо пополнять углеводные запасы организма. Это достигается увеличением содержания углево­дов в пищевом рационе и дополнительным введением их перед нача­лом работы или непосредственно при ее выполнении. Насыщение ор­ганизма углеводами способствует сохранению постоянной концентра­ции глюкозы в крови и тем самым повышает работоспособность чело­века.

Влияние углеводов на работоспособность установлено лаборатор­ными экспериментами и наблюдениями при спортивной деятельности. В опытах, проведенных B.C. Фарфелем, обнаружено, что натощак даже тренированные спортсмены не смогли пройти на лыжах 50 км. В этих условиях резко снизилось содержание глюкозы в крови, и спорт­смены были вынуждены прекратить работу, пройдя лишь 35 км. При нормальном питании и дополнительном приеме углеводов на старте концентрация глюкозы в крови остается постоянной и работоспособ­ность спортсменов при этом сохраняется на протяжении этой дистан­ции.

Углеводы следует принимать или непосредственно перед стартом, или не позднее, чем за 2 ч до начала работы. Если же это делать за 30— 90 мин до старта, то начало работы совпадает с периодом усиленного депонирования углеводов. Это ведет к уменьшению глюкозы, выходя­щей из печени в кровь. Преобладание процессов депонирования угле­водов над их расщеплением сопровождается понижением концентра­ции глюкозы в крови и ведет к ухудшению работоспособности орга­низма.

Прием углеводов более чем за 2 ч до старта обеспечивает почти полное их всасывание и депонирование до начала работы. В этом слу­чае никаких затруднений в расщеплении гликогена в печени не возни­кает. Прием углеводов непосредственно на старте также не создает каких-либо трудностей для расщепления. В этих условиях глюкоза на­чинает всасываться уже в процессе мышечной деятельности, при ко­торой расщепление гликогена и выход глюкозы в кровь преобладает над депонированием. Указанные сроки дополнительного питания должны изменяться в зависимости от количества принимаемой глю­козы. Например, большие дозы сахара (200 г и более) задерживают выход углеводов в депо в течение 3 ч и более.

При приеме углеводов непосредственно во время работы концент­рация глюкозы в крови увеличивается быстрее, чем это можно пред­положить, учитывая время, необходимое на их переваривание и вса­сывание. По-видимому, это происходит вследствие рефлекторного усиления расщепления углеводов в печени при действии сахара на ре­цепторы ротовой полости. Эта точка зрения подтверждается опытами с изолированным воздействием раздражителей сладкого вкуса на рецепторы слизистой оболочки рта или с введением небольших коли­честв 1,5%-ной глюкозы. В этих случаях сахар или совсем не поступает в организм, или поступает в ничтожном количестве, которое не может заметно увеличить концентрацию глюкозы в крови. Однако благодаря рефлекторным воздействиям с рецепторов ротовой полости усилива­ется расщепление углеводов в печени и, как следствие этого, повыша­ется концентрация глюкозы в крови.

Регуляция углеводного обмена. Депонирование углеводов, ис­пользование углеводных запасов печени и все другие процессы угле­водного обмена регулируются центральной нервной системой. Боль­шое значение в регуляции углеводного обмена имеет и кора больших полушарий. Одним из примеров этого может служить условнорефлекторное увеличение концентрации глюкозы в крови у спортсменов в предстартовом состоянии.

Эфферентные нервные пути, обеспечивающие регуляцию углевод­ного обмена, относятся к вегетативной нервной системе. Симпатичес­кие нервы усиливают процессы расщепления и выход гликогена из пе­чени. Парасимпатические нервы, наоборот, стимулируют депонирова­ние гликогена. Нервные импульсы могут воздействовать либо прямо на клетки печени, либо косвенным путем, через железы внутренней секреции. Гормон мозгового слоя надпочечника адреналин способству­ет выходу углеводов из депо. Гормон поджелудочной железы инсулин обеспечивает их депонирование. Кроме этих гормонов в регуляции уг­леводного обмена участвуют гормоны коркового слоя надпочечников, щитовидной железы и передней дол



Поделиться:


Последнее изменение этой страницы: 2016-06-28; просмотров: 469; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.162.59 (0.02 с.)