Глава 2. Социально-биологические основы физической культуры 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 2. Социально-биологические основы физической культуры



Глава 2. СОЦИАЛЬНО-БИОЛОГИЧЕСКИЕ ОСНОВЫ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

Медико-биологические и педагогические науки имеют дело с чело­веком как с существом не только биологическим, но и социальным. Социальность- специфическая сущность человека, которая не упраздняет его биологической субстанции, ведь биологическое нача­ло человека — необходимое условие для формирования и проявле­ния социального образа жизни. Между тем творят историю, изменя­ют живой и неживой мир, созидают и разрушают, устанавливают ми­ровые и олимпийские рекорды не организмы, а люди, человеческие личности. Таким образом, социально-биологические основы физичес­кой культуры — это принципы взаимодействия социальных и биоло­гических закономерностей в процессе овладения человеком ценнос­тями физической культуры.

Естественно - научные основы физической культуры — комплекс меди­ко-биологических наук (анатомия, физиология, биология, биохимия, гигиена и др.). Анатомия и физиология — важнейшие биологические науки о строении и функциях человеческого организма. Человек под­чиняется биологическим закономерностям, присущим всем живым су­ществам. Однако от представителей животного мира он отличается не только строением, но развитым мышлением, интеллектом, речью, осо­бенностями социально-бытовых условий жизни и общественных вза­имоотношений. Труд и влияние социальной среды в процессе развития человечества повлияли на биологические особенности организма со­временного человека и его окружение. В основе изучения органов и межфункциональных систем человека принцип целостности и единст­ва организма с внешней природной и социальной средой. Организм- слаженная единая саморегулирующаяся и саморазви­вающаяся биологическая система, функциональная деятельность ко­торой обусловлена взаимодействием психических, двигательных и вегетативных реакций на воздействия окружающей среды, которые могут быть как полезными, так и пагубными для здоровья. Отличи­тельная особенность человека — сознательное и активное воздейст­вие на внешние природные и социально-бытовые условия, опреде­ляющие состояние здоровья людей, их работоспособность, продол­жительность жизни и рождаемость (репродуктивность). Без знаний о строении человеческого тела, о закономерностях функ­ционирования отдельных органов и систем организма, об особеннос­тях протекания сложных процессов его жизнедеятельности нельзя организовать процесс формирования здорового образа жизни и фи­зической подготовки населения, в том числе и учащейся молодежи. Достижения медико-биологических наук лежат в основе педагоги­ческих принципов и методов учебно-тренировочного процесса, тео­рии и методики физического воспитания и спортивной тренировки.

Организм как единая саморазвивающаяся и саморегулирующаяся биологическая система

Развитие организма осуществляется во все периоды его жизни- с момента зачатия и до ухода из жизни. Это развитие назы­вается индивидуальным, илиразвитием в онтогенезе. При этом разли­чают два периода: внутриутробный (от момента зачатия и до рожде­ния) и внеутробный (после рождения).

Каждый родившийся человек наследует от родителей врожденные, ге­нетически обусловленные черты и особенности, которые во многом оп­ределяют индивидуальное развитие в процессе его дальнейшей жизни.

Оказавшись после рождения, образно говоря, в условиях автоном­ного режима, ребенок быстро растет, увеличивается масса, длина и площадь поверхности его тела. Рост человека продолжается прибли­зительно до 20 лет. Причем у девочек наибольшая интенсивность роста наблюдается в период от 10 до 13, а у мальчиков от 12 до 16 лет. Увеличение массы тела происходит практически параллельно с увели­чением его длины и стабилизируется к 20-25 годам.

Необходимо отметить, что за последние 100—150 лет в ряде стран наблюдается раннее морфофункциональное развитие организма у детей и подростков. Это явление называют акселерацией (лат. acceleratio -ускорение), оно связано не только с ускорением роста и развития организма вообще, но и с более ранним наступлением периода поло­вой зрелости, ускоренным развитием сенсорных (лат. Sensus- чувст­во), двигательных координации и психических функций. Поэтому гра­ницы между возрастными периодами достаточно условны и это связа­но со значительными индивидуальными различиями, при которых «физиологический» возраст и «паспортный» не всегда совпадают.

Как правило, юношеский возраст (16-21 год) связан с периодом со­зревания, когда все органы, их системы и аппараты достигают своей морфофункциональной зрелости. Зрелый возраст (22-60 лет) характеризу­ется незначительными изменениями строения тела, а функциональные возможности этого достаточно продолжительного периода жизни во многом определяются особенностями образа жизни, питания, двигатель­ной активности. Пожилому возрасту (61-74 года) и старческому (75 лет и более) свойственны физиологические процессы перестройки: сниже­ние активных возможностей организма и его систем - иммунной, нерв­ной, кровеносной и др. Здоровый образ жизни, активная двигательная де­ятельность в процессе жизни существенно замедляют процесс старения.

В основе жизнедеятельности организма лежит процесс автоматического поддержания жизненно важных факторов на необходимом уровне, всякое отклонение от которого ведет к немедленной мобили­зации механизмов, восстанавливающих этот уровень (гомеостаз).

Гомеостаз - совокупность реакций, обеспечивающих поддержание или восстановление относительно динамического постоянства внут­ренней среды и некоторых физиологических функций организма че­ловека (кровообращения, обмена веществ, терморегуляции и др.). Этот процесс обеспечивается сложной системой координированных приспособительных механизмов, направленных на устранение или ог­раничение факторов, воздействующих на организм как из внешней, так и из внутренней среды. Они позволяют сохранять постоянство со­става, физико-химических и биологических свойств внутренней среды, несмотря на изменения во внешнем мире и физиологические сдвиги, возникающие в процессе жизнедеятельности организма. В нормальном состоянии колебания физиологических и биохимических констант происходят в узких гомеостатических границах, и клетки ор­ганизма живут в относительно постоянной среде, так как они омыва­ются кровью, лимфой и тканевой жидкостью. Постоянство физико-хи­мического состава поддерживается благодаря саморегуляции обмена веществ, кровообращения, пищеварения, дыхания, выделения и дру­гих физиологических процессов.

Организм - сложная биологическая система. Все его органы связа­ны между собой и взаимодействуют. Нарушение деятельности одного органа приводит к нарушению деятельности других.

Огромное количество клеток, каждая из которых выполняет свои, присущие только ей функции в общей структурно-функциональной системе организма, снабжаются питательными веществами и необхо­димым количеством кислорода для того, чтобы осуществлялись жиз­ненно необходимые процессы энергообразования, выведения продук­тов распада, обеспечения различных биохимических реакций жизне­деятельности и т.д. Эти процессы происходят благодаря регуляторным механизмам, осуществляющим свою деятельность через нервную, кро­веносную, дыхательную, эндокринную и другие системы организма.

 

Функциональные системы организма

Сердечно-сосудистая система

Кровеносная система состоит из сердца и кровеносных сосудов. Сердце - главный орган кровеносной системы - представляет собой полый мышечный орган, совершаю­щий ритмические сокращения, благодаря которым происходит про­цесс кровообращения в организме. Сердце -автономное, автомати­ческое устройство. Однако его работа корректируется многочисленны­ми прямыми и обратными связями, поступающими от различных ор­ганов и систем организма. Сердце связано с центральной нервной сис­темой, которая оказывает на его работу регулирующее воздействие.

Сердечно-сосудистая система состоит из большого и малого круговкровообращения. Левая половина сердца обслуживает большой круг кровообращения, правая - малый. Большой круг кровообращения начина­ется от левого желудочка сердца, проходит через ткани всех органов и возвращается в правое предсердие. Из право­го предсердия кровь перехо­дит в правый желудочек, от­куда начинается малый круг кровообращения, который проходит через легкие, где ве­нозная кровь, отдавая угле­кислый газ и насыщаясь кис­лородом, превращается в ар­териальную и направляется в левое предсердие. Из левого предсердия кровь поступает в левый желудочек и оттуда вновь в большой круг крово­обращения.

Деятельность сердца за­ключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращения пред­сердий, сокращения желудоч­ков и общего расслабления сердца.

Пульс- волна колебаний, распространяемая по эластич­ным стенкам артерий в ре­зультате гидродинамического удара порции крови, выбра­сываемой в аорту под боль­шим давлением при сокраще­нии левого желудочка. Часто­та пульса соответствует частоте сокращений сердца. Частота пульса в покое (утром, лежа, натощак) оказывается ниже из-за увеличения мощности каждого сокращения. Урежение частоты пульса увеличива­ет абсолютное время паузы для отдыха сердца и для протекания про­цессов восстановления в сердечной мышце. В покое пульс здорового человека равен 60-70 удар/мин.

Кровяное давление создается силой сокращения желудочков сердца и упругостью стенок со­судов. Оно измеряется в плече­вой артерии. Различают макси­мальное (или систолическое) давление, которое создается во время сокращения левого желу­дочка (систолы), и минимальное (или диастолическое) давление, которое отмечается во время расслабления левого желудочка (диастолы). Давление поддер­живается за счет упругости сте­нок растянутой аорты и других крупных артерий. В норме у здо­рового человека в возрасте 18-40 лет в покое кровяное давле­ние равно 120/70 мм рт. ст. (120 мм систолическое давле­ние, 70 мм- диастолическое). Наибольшая величина кровяно­го давления наблюдается в аорте. По мере удаления от серд­ца кровяное давление оказывает­ся все ниже. Самое низкое давле­ние наблюдается в венах при впадении их в правое предсердие. Посто­янная разность давления обеспечивает непрерывный ток крови по кро­веносным сосудам (в сторону пониженного давления).

Дыхательная система

Дыхательная система включает в себя но­совую полость, гортань, трахею, бронхи и легкие. В процессе дыхания из атмосферно­го воздуха через альвеолы легких в орга­низм постоянно поступает кислород, а из организма выделяется угле­кислый газ.

Трахея в нижней своей части делится на два бронха, каждый из ко­торых, входя в легкие, древовидно разветвляется. Конечные мельчай­шие разветвления бронхов (бронхиолы) переходят в закрытые альвео­лярные ходы, в стенках которых имеется большое количество шаровидных образований — легоч­ных пузырьков (альвеол). Каж­дая альвеола окружена густой сетью капилляров. Общая по­верхность всех легочных пу­зырьков очень велика, она в 50 раз превышает поверхность кожи человека и составляет более 100 м2.

Легкие располагаются в гер­метически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой - плеврой, такая же оболочка вы­стилает изнутри полость груд­ной клетки. Пространство, об­разованное между этими листами плевры, называется плевральной по­лостью. Давление в плевральной полости всегда ниже атмосферного при выдохе на 3-4 мм рт. ст., при вдохе - на 7-9.

Процесс дыхания — это целый комплекс физиологических и био­химических процессов, в реализации которых участвует не только ды­хательный аппарат, но и система кровообращения.

Механизм дыхания имеет рефлекторный (автоматический) харак­тер. В покое обмен воздуха в легких происходит в результате дыха­тельных ритмических движений грудной клетки. При понижении в грудной полости давления в легкие в достаточной степени пассивно за счет разности давлений засасывается порция воздуха - происходит вдох. Затем полость грудной клетки уменьшается и воздух из легких выталкивается - происходит выдох. Расширение полости грудной клетки осуществляется в результате деятельности дыхательной муску­латуры. В покое при вдохе полость грудной клетки расширяет специ­альная дыхательная мышца - диафрагма, а также наружные межре­берные мышцы; при интенсивной физической работе включаются и другие (скелетные) мышцы. Выдох в покое производится выражено пассивно, при расслаблении мышц, осуществлявших вдох, грудная клетка под воздействием силы тяжести и атмосферного давления уменьшается. При интенсивной физической работе в выдохе участву­ют мышцы брюшного пресса, внутренние межреберные и другие ске­летные мышцы. Систематические занятия физическими упражнениями и спортом укрепляют дыхательную мускулатуру и способствуют увеличению объема и подвижности (экскурсии) грудной клетки.

Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови - в атмосферный воздух, называют внешним дыханием; перенос газов кровью - следующий этап и, наконец, тканевое (или внутреннее) дыхание- потребление клет­ками кислорода и выделение ими углекислоты как результат биохи­мических реакций, связанных с образованием энергии, чтобы обеспе­чить процессы жизнедеятельности организма.

Внешнее (легочное) дыхание осуществляется в альвеолах легких. Здесь через полупроницаемые стенки альвеол и капилляров кислород переходит из альвеолярного воздуха, заполняющего полости альвеол. Молекулы кислорода и углекислого газа осуществляют этот переход за сотые доли секунды. После переноса кислорода кровью к тканям осуществляется тканевое (внутриклеточное) дыхание. Кислород пере­ходит из крови в межтканевую жидкость и оттуда в клетки тканей, где используется для обеспечения процессов обмена веществ. Углекислый газ, интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь. С помощью крови он транспортируется к легким, а затем выводится из организма. Переход кислорода и угле­кислого газа через полупроницаемые стенки альвеол, капилляров и оболочек эритроцитов путем диффузии (перехода) обусловлен раз­ностью парциального давления каждого из этих газов. Так, например, при атмосферном давлении воздуха 760 мм рт. ст. парциальное давле­ние кислорода (рОг) в нем равно 159 мм рт. ст., а в альвеолярном - 102, в артериальной крови - 100, в венозной - 40 мм рт. ст. В рабо­тающей мышечной ткани рО2 может снижаться до нуля. Из-за разни­цы в парциальном давлении кислорода происходит его поэтапный переход в легкие, далее через стенки капилляров в кровь, а из крови в клетки тканей.

Углекислый газ из клеток тканей поступает в кровь, из крови - в легкие, из легких - в атмосферный воздух, так как градиент парциального давления углекислого газа (рСО2) направлен в обратную относи­тельно рО2 сторону (в клетках рСО2 - 50—60, в крови - 47, в альвеолярном воздухе - 40, в атмосферном воздухе - 0,2 мм рт. ст.).

Нервная система

Нервная система состоит из центрального ( головной и спинной мозг) и периферичес­кого отделов (нервов, отходящих от голов­ного и спинного мозга и расположенных на периферии нервных узлов). Центральная нервная система координи­рует деятельность различных органов и систем организма и регулиру­ет эту деятельность в условиях изменяющейся внешней среды по ме­ханизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека.

О структуре центральной нервной системы. Спинной мозг лежит в спинно-мозговом канале, образованном дужками позвонков. Первый шейный позвонок - граница спинного мозга сверху, а граница снизу - второй поясничный позвонок. Спинной мозг делится на пять отделов с определенным количеством сегментов: шейный, грудной, по­ясничный, крестцовый и копчиковый. В центре спинного мозга имеет­ся канал, заполненный спинномозговой жидкостью. На поперечном разрезе лабораторного препарата легко различают серое и белое веще­ство мозга. Серое вещество мозга образовано скоплением тел нервных клеток (нейронов), периферические отростки которых в составе спин­номозговых нервов достигают различных рецепторов кожи, мышц, су­хожилий, слизистых оболочек. Белое вещество, окружающее серое, состоит из отростков, связывающих между собой нервные клетки спин­ного мозга; восходящих чувствительных (афферентных), связывающих все органы и ткани (кроме головы) с головным мозгом; нисходящих двигательных (эфферентных) путей, идущих от головного мозга к дви­гательным клеткам спинного мозга. Итак, спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. В различных отделах спинного мозга находятся мотонейроны (двига­тельные нервные клетки), иннервирующие мышцы верхних конечнос­тей, спины, груди, живота, нижних конечностей. В крестцовом отделе располагаются центры дефекации, мочеиспускания и половой дея­тельности. Важная функция мотонейронов в том, что они постоянно обеспечивают необходимый тонус мышц, благодаря которому все рефлекторные двигательные акты осуществляются мягко и плавно. Тонус центров спинного мозга регулируется высшими отделами централь­ной нервной системы. Поражения спинного мозга влекут за собой раз­личные нарушения, связанные с выходом из строя проводниковой функции. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса.

Головной мозг представляет собой скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов. Строение головного мозга несравнимо сложнее строения любого органа человеческого тела.

Кора больших полушарий головного мозга - наиболее молодой в филогенетическом отношении отдел головного мозга (филогенез — процесс развития растительных и животных организмов в течение времени существования жизни на Земле). В процессе эволюции кора больших полушарий стала высшим отделом центральной нервной сис­темы, формирующим деятельность организма как единого целого в его взаимоотношениях с окружающей средой. Мозг активен не только во время бодрствования, но и во время сна. Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% массы тела человека, мозг поглощает 18— 25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Он использует 60—70% глюкозы, образуемой печенью, и это несмотря на то, что мозг содержит меньше крови, чем другие органы. Ухудшение кровоснабже­ния головного мозга может быть связано с гиподинамией. В этом слу­чае возникает головная боль различной локализации, интенсивности и продолжительности, головокружение, слабость, понижается умст­венная работоспособность, ухудшается память, появляется раздражи­тельность. Чтобы охарактеризовать изменения умственной работоспо­собности, используется комплекс методик, оценивающих различные ее компоненты (внимание, объем памяти и восприятия, логическое мышление).

Вегетативная нервная система - специализированный отдел нервной системы, регулируемый корой больших полушарий. В отли­чие от соматической нервной системы, иннервирующей произвольную (скелетную) мускулатуру и обеспечивающей общую чувствительность тела и других органов чувств, вегетативная нервная система регулиру­ет деятельность внутренних органов -дыхания, кровообращения, вы­деления, размножения, желез внутренней секреции. Вегетативная нервная система подразделяется на симпатическую и парасимпатическую системы. Деятельность сердца, сосудов, органов пи­щеварения, выделения, половых и других, регуляция обмена веществ, термообразования, участие в формировании эмоциональных реакций (страх, гнев, радость) - все это находится в ведении симпатической и парасимпатической нервной системы и под контролем высшего отдела центральной нервной системы.

Рецепторы и анализаторы

Способность организма быстро приспосаб­ливаться к изменениям окружающей среды реализуется благодаря специальным обра­зованиям - рецепторам, которые, обладая строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление) в нервные импульсы, поступаю­щие по нервным волокнам в центральную нервную систему. Рецепто­ры человека делятся на две основные группы: экстеро - (внешние) и интеро - (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, которая называется ана­лизатором. Анализатор состоит из трех отделов - рецептора, провод­никовой части и центрального образования в головном мозге.

Высшим отделом анализатора является корковый отдел. Перечис­лим названия анализаторов, о роли которых в жизнедеятельности че­ловека многим известно. Это кожный анализатор (тактильная, боле­вая, тепловая, холодовая чувствительность); двигательный (рецепто­ры в мышцах, суставах, сухожилиях и связках возбуждаются под вли­янием давления и растяжения); вестибулярный (расположен во внут­реннем ухе и воспринимает положение тела в пространстве); зритель­ный (свет и цвет); слуховой (звук); обонятельный (запах); вкусовой (вкус); висцеральный (состояние ряда внутренних органов).

Эндокринная система

Железы внутренней секреции, или эндо­кринные железы, вырабатывают особые биологические вещества - гормоны. Термин «гормон» происходит от греческого «hormo» - побуждаю, возбуждаю. Гормоны обеспечивают гумораль­ную (через кровь, лимфу, межтканевую жидкость) регуляцию физио­логических процессов в организме, попадая во все органы и ткани. Часть гормонов продуцируется только в определенные периоды, боль­шинство же - на протяжении всей жизни человека. Они могут тормо­зить или ускорять рост организма, половое созревание, физическое и психическое развитие, регулировать обмен веществ и энергии, дея­тельность внутренних органов. К железам внутренней секреции отно­сят: щитовидную, околощитовидные, зобную, надпочечники, поджелу­дочную, гипофиз, половые железы и ряд других.

Некоторые из перечисленных желез вырабатывают кроме гормонов еще секреторные вещества (например, поджелудочная железа участ­вует в процессе пищеварения, выделяя секреты в двенадцатиперстную кишку; продуктом внешней секреции мужских половых желез - яичек яв­ляются сперматозоиды и т.д.). Такие железы называют железами смешан­ной секреции.

Гормоны, как вещества высокой биологической активности, несмотря на чрезвычайно малые концентрации в крови способны вызывать значи­тельные изменения в состоянии орга­низма, в частности в осуществлении обмена веществ и энергии. Они обла­дают дистанционным действием, ха­рактеризуются специфичностью, ко­торая выражается в двух формах: одни гормоны (например, половые) влияют только на функцию некото­рых органов и тканей, другие управ­ляют лишь определенными измене­ниями в цепи обменных процессов и в активности регулирующих эти про­цессы ферментов. Гормоны сравни­тельно быстро разрушаются и для поддержания их определенного ко­личества в крови необходимо, чтобы они неустанно выделялись со­ответствующей железой. Практически все расстройства деятельности желез внутренней секреции вызывают понижение общей работоспо­собности человека. Функция эндокринных желез регулируется цент­ральной нервной системой, нервное и гуморальное воздействие на раз­личные органы, ткани и их функции представляют собой проявление единой системы нейрогуморальной регуляции функций организма.

Гипокинезия и гиподинамия

Гипокинезия ( греч. hypo - понижение, уменьшение, недо­статочность; kinesis- движение) - особое состояние организма, обу­словленное недостаточностью двигательной активности. В ряде случа­ев это состояние приводит к гиподинамии. Гиподинамия (греч. hypo — понижение; dynamis сила) - совокупность отрицательных морфо-функциональных изменений в организме вследствие длительной ги­покинезии. Это атрофические изменения в мышцах, общая физичес­кая детренированность, детренированность сердечно-сосудистой сис­темы, понижение ортостатической устойчивости, изменение водно-со­левого баланса, системы крови, деминерализация костей и т.д. В ко­нечном счете снижается функциональная активность органов и сис­тем, нарушается деятельность регуляторных механизмов, обеспечива­ющих их взаимосвязь, ухудшается устойчивость к различным небла­гоприятным факторам; уменьшается интенсивность и объем аффе­рентной информации, связанной с мышечными сокращениями, нару­шается координация движений, снижается тонус мышц (тургор), па­дает выносливость и силовые показатели. Наиболее устойчивы к раз­витию гиподинамических признаков мышцы антигравитационного характера (шеи, спины). Мышцы живота атрофируются сравнительно быстро, что неблагоприятно сказывается на функции органов крово­обращения, дыхания, пищеварения. В условиях гиподинамии снижа­ется сила сердечных сокращений в связи с уменьшением венозного возврата в предсердия, сокращаются минутный объем, масса сердца и его энергетический потенциал, ослабляется сердечная мышца, снижа­ется количество циркулирующей крови в связи с застаиванием ее в депо и капиллярах. Тонус артериальных и венозных сосудов ослабля­ется, падает кровяное давление, ухудшаются снабжение тканей кисло­родом (гипоксия) и интенсивность обменных процессов (нарушения в балансе белков, жиров, углеводов, воды и солей). Уменьшается жиз­ненная емкость легких и легочная вентиляция, интенсивность газооб­мена. Все это сопровождается ослаблением взаимосвязи двигательных и вегетативных функций, неадекватностью нервно-мышечных напря­жений. Таким образом, при гиподинамии в организме создается ситуа­ция, чреватая «аварийными» последствиями для его жизнедеятельнос­ти. Если добавить, что отсутствие необходимых систематических за­нятий физическими упражнениями связано с негативными измене­ниями в деятельности высших отделов головного мозга, его подкорко­вых структурах и образованиях, то становится понятно, почему сни­жаются общие защитные силы организма и возникает повышенная утомляемость, нарушается сон, снижается способность поддерживать высокую умственную или физическую работоспособность.

МАТЕРИАЛ ИЗ 5 ГЛАВЫ

 

Проявления тренирован­ности при предельно напряженной работе

Нагрузка, выполняемая на тренировках и соревнованиях, не бывает стандартной. На соревнованиях каждый стремится достичь максимально возможной для него интен­сивности работы. Физиологические исследования, проводимые при работе на пределе функциональных возможностей организма, могут дать представление его физиологических возможностях.

Применяются три, варианта исследований при такой работе. Пер­вый вариант состоит в регистрации физиологических изменений во время выполнения спортивного упражнения в условиях соревнования или близких к ним. Физиологические функции регистрируются во время этой работы, или сразу после нее, или на протяжении всего последующего восстановительного периода.

Второй вариант представляет собой лабораторную работу в виде бега на месте, или работу на велоэргометре, или бег на тредбане. Ис­пытуемый совершает работу, постепенно усиливая ее мощность с целью максимальной мобилизации всех функций организма, обеспе­чивающих предельную работу. К концу такого усиления испытуемый уже работает в полную силу своих возможностей. В это время и про­изводят необходимые физиологические замеры, которые характеризу­ют предельную мобилизацию физиологических возможностей орга­низма спортсмена.

Третий вариант заключается в том, что испытуемый совершает ра­боту, строго стандартную по мощности. Однако продолжительность
работы не ограничивается. Она производится до тех пор, пока испытуемый может поддерживать заданную мощность (заданное число оборотов педалей, темп бега при определенной высоте подъема бедра, скорость бега или плавания за лидером). Работа прекращается в тот момент, когда ее мощность или скорость передвижения начинают не­отвратимо/падать и испытуемый даже при всем напряжении своих сил вынужден отказаться от дальнейшего выполнения работы в данных условиях. Иначе говоря, с целью характеристики тренированности ис­следуется выполнение работы «до отказа».

Результаты исследований при предельной работе спортсмена резко отличается от тех, которые были получены при изучении стандартной работы. При предельной работе отмечалось обратное: у тренирован­ных во многих физиологических показателях были большие сдвиги, чем у нетренированных. Это выражается в том, что тренированный

расходует при предельной работе больше энергии, чем нетренирован­ный, а объясняется тем, что сама работа, произведенная тренирован­ным, превышает величину работы, которую может выполнить нетре­нированный. Экономизация проявляется в несколько меньшем расхо­де энергии на единицу работы, однако весь объем работы у трениро­ванного при предельной работе настолько велик, что общая величина затраченной энергии оказывается очень большой.

Преобладание расхода энергии у тренированных особенно заметно в тех случаях, когда выполняемая работа не отличается сложностью. Вращение педалей велоэргометра сопровождается почти одинаковым расходом энергии у мастера спорта и спортсмена третьего разряда. Между тем различия в количестве работы, которую может выполнить на велоэргометре мастер или новичок, очень велики, что и определяет различия в величинах энергетических трат.

Весьма тесно связаны с тренированностью спортсмена показатели максимального потребления кислорода. Чем тренированнее спортсмен, тем большее количество кислорода он в состоянии потребить во время предельной работы. Самые высокие показатели (5,5—6,5 л/мин, или 80—90 мл/кг) зарегистрированы у представителей циклических видов спорта — мастеров международного класса, находящихся в момент ис­следования в состоянии наилучшей спортивной формы. Несколько меньшие цифры — около 4,5—5,5 л/мин, или 70—80 мл/кг, — отмеча­ются у менее подготовленных мастеров спорта и некоторых первораз­рядников. У спортсменов второго, третьего разряда величина макси­мального потребления кислорода достигает приблизительно 3,5— 4,5 л/мин, или 60—70 мл/кг. Показатель ниже 3 л/мин, или 50 мл/кг, характеризует низкий уровень тренированности.

Такая тесная связь между максимальным потреблением кислорода и тренированностью наблюдается в тех видах спорта, которые предъ­являют значительные требования к снабжению мышц кислородом и характеризуются высоким уровнем аэробных реакций. Для специали­зирующихся в работе максимальной мощности связь между трениро­ванностью и максимальным потреблением кислорода очень мала, так как для них более характерна связь между тренированностью и мак­симальным кислородным долгом, отражающим возможный объем анаэ­робных процессов организме. У таких спортсменов (например, бегу­нов на короткие и средние дистанции) максимальный кислородный долг может достирать 25 л, если это спортсмены очень высокого клас­са. У менее тренированных спортсменов максимальный кислородный долг не превышает 10—15 л.

Большая величина максимального потребления кислорода у высокотренированных спортсменов тесно связана с большими величинами объема дыхания и кровообращения. Максимальное потребление кисло­рода, равное 5—6 л/мин, сопровождается легочной вентиляцией, до­стигающей 200 л в 1 мин, при частоте дыхания, превышающей 60 в 1 мин, и глубине каждого дыхания, равной более 3 л. Иначе говоря, максимальное потребление кислорода сопровождается максимальной интенсивностью легочного дыхания, которое у высокотренированных спортсменов достигает значительно больших величин, чем у малотре­нированных. Соответственно этому максимальных величин достигает минутный объем крови. Для того чтобы транспортировать от легких в мышцы 5—6 л кислорода в 1 мин, сердце должно перекачивать в каж­дую минуту около 35 л крови. Частота сердечных сокращений при этом составляет 180—190 в 1 мин, а систолический объем крови может превышать 170 мл. Естественно, что столь резко возрастающая ско­рость кровотока сопровождается высоким подъемом артериального давления, достигающим 200—250 мм рт. ст.

Если выполняемая предельная работа характеризуется высокой интенсивностью анаэробных реакций, то она сопровождается накопле­нием продуктов анаэробного распада. Оно больше у тренированных спортсменов, чем у нетренированных. Например, концентрация мо­лочной кислоты в крови при предельной работе может доходить у тре­нированных спортсменов до 250—300 мг %. Соответственно этому общие биохимические сдвиги в крови и моче у тренированных спорт­сменов при предельной работе значительно большие, чем у нетрени­рованных.

Понижение уровня сахара в крови, являющееся одним из основных признаков утомления, наиболее выражено при очень длительной ра­боте у хорошо тренированных спортсменов. Даже при величине содер­жания сахара в крови ниже 50 мг % тренированной марафонец еще долго способен сохранять высокий темп бега, в то время как Нетрени­рованный при таком низком содержании сахара в крови вынужден сойти с дистанции.

Значительные изменения в химизме крови во время работы гово­рят о том, что центральная нервная система тренированного организма обладает устойчивостью к действию резко измененного состава внут­ренней среды. Организм высокотренированного спортсмена обладает повышенной сопротивляемостью к действию факторов утомления, иначе говоря, большой выносливостью. Он сохраняет работоспособ­ность при таких условиях, при которых нетренированный организм вынужден прекратить работу.

Таким образом, функциональные показатели тренированности при выполнении предельно напряженной работы в циклических видах двигательной деятельности обусловливаются мощностью работы. Так, из приведенных данных видно, что при работе субмаксимальной и максимальной мощности наибольшее значение имеют анаэробные процессы энергообеспечения, т.е. способность адаптации организма к работе при существенно измененном составе внутренней среды в кис­лую сторону. При работе большой и умеренной мощности главным фактором результативности является своевременная и удовлетворяю­щая доставка кислорода к работающим тканям. Аэробные возможнос­ти организма при этом должны быть очень высоки.

При предельно напряженной мышечной деятельности происходят значительные изменения практически во всех системах организма, и это говорит о том, что выполнение этой напряженной работы связано с вовлечением в ее реализацию больших резервных мощностей орга­низма, с усилением обмена веществ и энергии.

Таким образом, организм человека, систематически занимающего­ся активной двигательной деятельностью, в состоянии совершить более значительную по объему и интенсивности работу, чем организм человека, не занимающегося ею. Это обусловлено систематической ак­тивизацией физиологических и функциональных систем организма, вовлечением и повышением их резервных возможностей, своего рода тренированностью процессов их использования и пополнения. Каж­дая клетка, их совокупность, орган, система органов, любая функцио­нальная система в результате целенаправленной систематической упражняемости повышают показатели своих функциональных возмож­ностей и резервных мощностей, обеспечивая в итоге более высокую работоспособность организма за счет того же эффекта упражняемости, тренированности мобилизации обменных процессов.

Обмен веществ



Поделиться:


Последнее изменение этой страницы: 2016-06-28; просмотров: 1084; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.119.251 (0.036 с.)