Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Исходя из соотношения неопределённостей оценить минимальную кинетическую энергию электрона, движущегося По стационарной орбите атома водорода

Поиск

1) 1эВ;

2) 2эВ;

3) 3эВ;

4) 4эВ.

Раздел 2

Электрон в атоме находиться в f-состоянии. Определите момент импульса электрона.

1) 4ħ;

2) 2,2ħ;

3) 3ħ;

4) 3,46ħ.

3. Электрон находиться в прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы L=0,2 нм, энергия электрона En=37,7эВ. Определить номер энергетического уровня.

1) 1;

2) 2;

3) 3;

4) 4.

5)

4. Y- функция некоторой частицы в потенциальном поле имеет вид Y=(А/r)e-r/a, где r – расстояние этой частицы до силового центра, а – некоторая постоянная. Используя условие нормировки вероятностей, запишите Y-функцию частицы в явном виде.

1) ;

2)

3)

4)

Раздел 3

Используя теорию Бора для атома водорода, определите скорость движения электрона по первой боровской орбите.

1) ;

2) ;

3) ;

4) .

Раздел 1

Исходя из соотношения неопределённостей оценить минимальную кинетическую энергию электрона, движущегося по стационарной орбите атома водорода

1) 1эВ;

2) 2эВ;

3) 3эВ;

4) 4эВ.

Раздел 2

Электрон в атоме находиться в f-состоянии. Определите момент импульса электрона.

1) 4ħ;

2) 2,2ħ;

3) 3ħ;

4) 3,46ħ.

8. Электрон находиться в прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы L=0,2 нм, энергия электрона En=37,7эВ. Определить номер энергетического уровня.

1) 1;

2) 2;

3) 3;

4) 4.

5)

9. Y- функция некоторой частицы в потенциальном поле имеет вид Y=(А/r)e-r/a, где r – расстояние этой частицы до силового центра, а – некоторая постоянная. Используя условие нормировки вероятностей, запишите Y-функцию частицы в явном виде.

1) ;

2)

3)

4)

Раздел 3

Используя теорию Бора для атома водорода, определите скорость движения электрона по первой боровской орбите.

1) ;

2) ;

3) ;

4) .

Параллельный пучок электронов падает нормально на диафрагму с узкой прямоугольной щелью шириной a = 2 мкм. Определить положение 2ого дифракционного минимума на экране, отстающем от щели на расстояние l = 50 см. Скорость всех электронов одинакова и равна

1.

2.

3.

4.

Параллельный пучок электронов падает нормально на диафрагму с узкой прямоугольной щелью шириной a = 2 мкм. Во сколько раз отличается ширина 1ого дифракционного максимума b1 от центрального дифракционного максимума b (). Скорость всех электронов одинакова и равна

1. 1

2. 2

3. 0.5

4. 0.4

Пучок электронов встречает на своем пути потенциальный барьер высотой U = 27 эВ. Определить энергию электронов E, если известно, что коэффициент пропускания волн Де Бройля D = 8/9. Известно, что U < E.

1. 36 эВ

ЭВ

ЭВ

ЭВ

Определить значение орбитального момента импульса PQ электрона в возбужденном атоме водорода при максимальном орбитальном квантовом числе l, если энергия возбуждения E = -12.9 эВ.

1.

2.

3.

4.

Частица находится в возбужденном (n = 4) состоянии в одномерном потенциальном ящике шириной l с абсолютно непроницаемыми стенками. В какой из областей A(0 <= x <= l/3) и B(2/3 <= x <= l) вероятность пребывания электрона больше.

1. A > B

2. A<B

3. A=B

Недостаточно данных


1. Определить длину волны λ спектральной линии, излучаемой при переходе электрона с более высокого уровня энергии на более низкий уровень, если при этом энергия атома изменилась на ∆Ε=20эВ.

1. 62нм

Нм

Нм

Нм

2. Определить импульс и энергию электрона, если длина волны λ=1,2нм.

1. p=3,5∙1023 E=3,32∙1019

2. p=3,5∙10-23 E=3,32∙10-19

3. p=5,5∙10-25 E=1,66∙10-19

4. p=5,5∙1025 E=1,66∙1019

3. Заряженная частица, ускоренная разностью потенциалов U=600В, имеет длину волны де Бройля λ=1,3пм. Принимая заряд этой частицы равным заряду электрона, определить ее массу.

1. 1,7∙10-25

2. 2,7∙10-27

3. 1,35∙10-27

4. 3,2∙10-25

4. На дифракционную решетку с периодом d нормально падает пучок света от разрядной трубки, наполненной атомарным водородом. Дифракционный максимум в спектре k-го порядка, наблюдаемый под углом φ, соответствует одной из линий серии Лаймана. Определите главное квантовое число, соответствующее энергетическому уровню, с которого произошел переход.

1.

2.

3.

4.

5. ψ-Функция некоторой частицы, находящейся в потенциальном поле, имеет вид
, где r – расстояние этой частицы до силового центра; a – некоторая постоянная. Определите явный вид ψ-функции частицы.

1.

2.

3.

4.

1. Как выглядят формулы уравнений: а) временного уравнения Шредингера б) стационарного уравнения Шредингера (Ñ2 – оператор Лапласа)

А.

Б.

В.

Г.

Ответы:

1. а) А б) Б

2. а) В б) Б

3. а) В б) Г

4. а) А б) Г

2. Какой оператор имеет следующий вид:

Ответы:

Оператор координаты

Оператор проекции импульса

3. Оператор кинетической энергии

Оператор полной энергии



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 895; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.188.166 (0.007 с.)