Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сварка углеродистых и легированных конструкционных сталейСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Углеродистые (более 0,30% С) и легированные (легирующих элементов до 3—5%) конструкционные стали (45, ЗОХГСА, 40ХФА и др.) применяют в состоянии закалки и отпуска как материал повышенной прочности для изготовления деталей машин и конструкций. В нормализованном состоянии (закалка с охлаждением на воздухе) они имеют перлитную или мартенситную структуру и по этому признаку являются сталями перлитного или мартен-ситного класса. Стали, одновременно легированные хромом, молибденом и ванадием, относятся к теплоустойчивым сталями (15ХМ, 15Х1М1Ф и др.). По структуре в нормализованном состоянии теплоустойчивые стали могут быть перлитного и мартенситного классов. Электродуговую сварку углеродистых и легированных сталей выполняют электродными материалами, обеспечивающими необходимые механические свойства или теплоустойчивость наплавленного металла. Основная трудность при сварке углеродистых и легированных сталей заключается в закалке околошовной зоны и возможности образования холодных трещин. Для предупреждения холодных трещин рекомендуется: · подогревать изделия до 100—300° С для замедления охлаждения и исключения закалки сварного соединения; · заменять однослойную сварку многослойной; при этом сваривают валиками небольшого сечения по неостывшим (ниже 100— · применять для сварки основные электроды и флюсы; перед сваркой прокаливать электроды и флюсы при 400—450° С в течение нескольких часов для удаления из них влаги; сваривать на постоянном токе обратной полярности; · производить отпуск изделий непосредственно после сварки до 300° С и выше для повышения пластичности закаленной структуры. Контактную точечную сварку конструкционных сталей выполняют на мягких режимах (продолжительный нагрев током и быстрое удаление заготовок из машины во избежание отвода теплоты электродами). Контактную стыковую сварку этих сталей производят методом прерывистого оплавления, что обеспечивает подогрев деталей перед сваркой. Сварка высокохромистых сталей Высокохромистые стали, содержащие 12—28% Сr, обладают антикоррозионными и жаропрочными свойствами. В зависимости от структуры в нормализованном состоянии их подразделяют на ферритные (12X17, 15Х25Т, 15X28), ферритно-мартенситные (12X13) и мартеиситные (20X13, 30X13, 40X13). Трудности при сварке ферритных сталей связаны с охрупчи-ванием металла шва и зоны термического влияния. При нагреве до высоких температур происходит интенсивное укрупнение зерен. При замедлении охлаждения в области температур 550—400° С по границам зерен выпадают хрупкие фазы. Для предупреждения указанных явлений при сварке этих сталей необходимо: 1) сваривать при малых погонных энергиях, т. е. применять пониженные значения тока и валики малого сечения для ускорения охлаждения при сварке; 2) отжигать после сварки при 800—900° С для растворения хрупких фаз с последующим быстрым охлаждением. При сварке ферритно-мартенситных и мартенситных сталей возможны закалка шва и околошовной зоны и образование холодных трещин. Для предупреждения трещин эти стали сваривают с подогревом до 200—300° С. Сварка аустенитных хромоникелевых сталей Введение в хромистую сталь, содержащую 18% Cr, 8%Ni переводит ее из ферритного класса в аустенитный. По сравнению с ферритными сталями аустенитные обладают более высокой коррозионной стойкостью и жаропрочностью. При сварке коррозионно-стойких сталей типа 18-8 (18% Сr и 8% Ni) возможно выпадение карбидов хрома по границам зерен при продолжительном пребывании металла в зоне температур 500--800° С и возникновение склонности к межкристаллитной коррозии. Для получения коррозионно-стойких сварных соединений необходимо применять следующие меры: · сваривать при малых погонных энергиях с теплоотводя- · вводить в сталь и шов сильные карбидообразующие элементы (титан, ниобий) и снижать содержание углерода с целью исключения выпадения карбидов хрома; · закаливать после сварки с 1050°С; при этом нагрев до высокой температуры приводит к растворению карбидов хрома и получению чисто аустенитной структуры; закалка фиксирует эту структуру в сварном соединении. Повышение содержания хрома до 25% и никеля до 20% обеспечивает стойкость стали против коррозии в высокотемпературной газовой среде и концентрированных кислотах. При сварке аустенитных сталей этого типа металл шва склонен к образованию крупнокристаллической первичной структуры и возникновению горячих трещин. Для уменьшения склонности к горячим трещинам необходимо: · применять специальную аустенитную сварочную проволоку и электроды, легированные марганцем (Св-30Х25Н16Г7 и др.); · сваривать на небольших токах и пониженном напряжении для получения широких и выпуклых, а не вогнутых сварных швов. Аустенитные хромоникелевые стали хорошо свариваются контактной сваркой. Точечную и шовную сварку проводят на пониженных плотностях тока, так как эти стали обладают высоким удельным сопротивлением и при повышенном давлении, вследствие их значительной прочности при высоких температурах. Сварка чугуна Чугун относится к категории плохо свариваемых сплавов. Его сваривают для исправления дефектов в отливках и при ремонте деталей, получивших трещины при эксплуатации. Дуговая сварка холодного металла чугунными электродами с покрытиями пе обеспечивает хорошего качества сварных соединений. Металл шва и переходной зоны получает отбеленную структуру, а околошовная зона закаливается. Закалку и отбеленную структуру устраняют высокотемпературным продолжительным отжигом. Горячую сварку чугуна выполняют с предварительным подогревом свариваемых деталей до 400—700° С. Детали подогревают в нагревательных печах и горнах с применением древесного угля и воздушного дутья. Перед сваркой в деталях вырубают дефектные места и разделывают кромки, которые затем заформовывают с помощью графитных пластин и кварцевого песка, замешанного на жидком стекле. Сваривают чугунными электродами (диаметром 8—25 мм) со стабилизирующей или специальной обмазкой. Ток выбирают, принимая 50—90 А на 1 мм диаметра электрода. Сваренные детали охлаждают вместе с печыо. При горячей сварке чугуна получают сварное соединение без твердых отбеленных и закаленных участков. Однако горячая сварка — дорогой и трудоемкий процесс; ее применяют для ремонта уникальных деталей. Горячую сварку также выполняют науглероживающим газовым пламенем с флюсом на основе буры. При холодной сварке чугуна сваривают стальными, медно-железными, медно-никелевыми электродами и электродами из аустенитного чугуна. В случае применения стальных электродов валики наплавляют низкоуглеродистыми электродами со стабилизирующей или качественной обмазкой. Заготовку сваривают при малых погонных энергиях электродами небольшого диаметра. Наплавку выполняют многослойной. Применяют также стальные электроды с покрытием, содержащим большое количество карбидо-образующих элементов. Наплавленный металл имеет мягкую основу с вкрапленными карбидами. Эти способы не исключают образования отбеленных и закалочных структур в околошовной зоне, но они просты и обеспечивают мягкую хорошо обрабатываемую наплавку. Для усиления связи между основным металлом и наплавкой иногда устанавливают шпильки, укрепляемые с помощью резьбы на поверхности свариваемых кромок. Процесс начинают с кольцевой обварки шпилек, затем их соединяют общей наплавкой по всей поверхности кромок. Медно-железные электроды состоят из медного прутка с оплеткой из жести или пучка из медных и стальных стержней. Электроды имеют специальное или стабилизирующее покрытие. Медно-никелевые электроды состоят из стержней монель-металла (70% Ni, 28% Си и остальное Fe) или мельхиора (80% Си, 20% Ni) со стабилизирующей обмазкой. Применение медно-железных и медно-никелевых электродов позволяет получить наплавку, у которой отбеливание в переходной зоне наблюдается только на отдельных участках. Наибольшее применение имеют медно-железные электроды, как более дешевые и обеспечивающие достаточную прочность металла шва. Сварка меди и ее сплавов На свариваемость меди большое влияние оказывают содержащиеся в ней вредные примеси (кислорода, водорода, висмута, свинца). Кислород, находящийся в меди в виде закиси Сu2О, является причиной образования горячих трещин. Закись меди образует с медью легкоплавкую эвтектику (Сu2О — Сu) с температурой плавления 1064° С (для меди 1080° С), которая располагается по границам кристаллов сварного шва. В результате действия сварочных деформаций и напряжений шов может разрушаться по жидким прослойкам с образованием горячих трещин. Наличие сетки эвтектики по границам зерен делает шов хрупким и при комнатных температурах. Для расплавленной меди характерна высокая растворимость водорода, который при затвердевании сварочной ванны, интенсивно выделяясь, может вызвать пористость в случае относительно быстрого охлаждения и задержании процесса его выделения в атмосферу. При единичном производстве изделий и ремонтных работ применяют газовую сварку меди ацетилено-кислородным пламенем повышенной мощности; для листов толщиной свыше 5 мм предварительный подогрев. Присадочным материалом служит медные прутки с небольшими добавками олова, цинка, иногда серебра для улучшения жидкотекучости, а также кремния и фосфора как раскислителей. Сваривают с флюсами, в состав которых входят бура (Na2B4O7), борная кислота (Н3ВО3) и борный ангидрид (В3О2). После сварки рекомендуется быстрое охлаждению деталей в воде и проковка или прокатка швов в холодном состоянии. Проковкой устраняют хрупкость, связанную с крупнозернистой структурой и сеткой закиси меди по границам кристаллов. Получили развитие ручная и автоматическая дуговая сварки меди угольным и металлическим электродами. При ручной сварке угольным электродом применяют присадочные прутки из оловянистой или кремнистой бронзы и флюсы, основной частью которых является бура. Сваривают длинной дугой на постоянном токе прямой полярности. Металлические электроды состоят и;) медного стержня, покрытого специальной обмазкой. Металлическими электродами сваривают короткой дугой на постоянном тока обратной полярности. Сварочный ток выбирают, принимая 50— 60 А на 1 мм диаметра электрода; при большой толщине свариваемые листы подогревают. Автоматическую сварку угольным электродом ведут под слоем плавленого флюса, применяемого для низко углеродистых и легированных сталей. Присадочный материал в виде полосы из латуни укладывают на свариваемый стык. Цинк, входящий в состав латуни, является раскислителем медного сварного шва. Автоматическую сварку металлическим электродом ведут медной проволокой под слоем плавленого флюса. Рассмотренные виды дуговой сварки меди не обеспечивают механических и особенно специальных физических свойств сварного шва, близких к свойствам основного металла (электропроводность и др.). Сварка металлическим электродом дает более высокое качество сварных соединений по сравнению со сваркой угольным электродом. Применение специальных керамических флюсов для автоматической сварки меди обеспечивает наряду с хорошим формированием сварного шва механические и физические свойства, близкие к требуемым. Успешно применяют сварку меди в атмосфере защитных газов (аргоне, азоте или в их смесях). Сваривают вольфрамовым электродом на постоянном токе прямой полярности. В качестве присадочного материала применяют прутки из меди, содержащие кремний, олово, марганец. Рекомендуется подогрев от 200 до 800° С. Латуни являются сплавами меди, содержащими до 50% Zn. Основной трудностью при их сварке является испарение цинка. И результате испарения цинка латунный шов теряет свои свойства и в нем возможно возникновение пор. Пары цинка ядовиты, сварщики должны работать в специальных масках (респираторах). Для сварки латуни применяют те же методы, что и для сварки миди, но используют приемы, уменьшающие испарение цинка. При газовой сварке латуни применяют газовый флюс. При этом способе в пламя горелки вместе с ацетиленом вводят пары боросодержащих жидкостей. Образующийся на поверхности сварочной ванны борный ангидрид связывает окислы цинка и образует сплошной слой шлака. Шлак препятствует выходу паров цинка из сварочной ванны. Возможна также газовая сварка латуни окислительным пламенем, что приводит к появлению тугоплавкой пленки описи цинка на поверхности сварочной ванны, препятствующей иго испарению. Сваривают таким образом, чтобы эта пленка не разрушалась. Во всех случаях ядро пламени удаляют от сварочной ванны и направляют на присадочный пруток. Сваривают с большой скоростью. При сварке угольной дугой присадочными материалами служат кремнистые и марганцовистые бронзы или латунь с повышенным содержанием цинка. Дугу зажигают и поддерживают не на основном металле, а на конце присадочного прутка. Металлическими электродами со специальными покрытиями сваривают очень короткой дугой без колебаний конца электрода. Почти все методы сварки латуни не обеспечивают необходимого качества сварных швов. Исключение составляет газоэлектрическая и автоматическая сварка под керамическим флюсом. Латунь можно успешно сваривать контактной сваркой, так как электропроводность и теплопроводность латуни приблизительно такие же, как и у низкоуглеродистой стали. Большинство бронз является литейными материалами и сварку их применяют только для заварки дефектов или ремонта. Наиболее широко применяют дуговую сварку металлическим электродом. Электроды для Сварки бронз представляют собой стержень, состав которого близок к составу основного металла с нанесенным на него специальным покрытием. Оловянные бронзы рекомендуется сваривать быстро, чтобы не перегреть основной металл, в противном случае возможно выплавление легкоплавкой составляющей.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 1396; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.248.48 (0.011 с.) |