Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Абразивно-жидкостная отделкаСодержание книги
Поиск на нашем сайте
Отделка объемно-криволинейных и фасонных поверхностей обычными методами вызывает большие технологические трудности. Она требует использования сложных кинематических схем станков и дорогого режущего инструмента. Метод абразивно-жидкостной отделки позволяет решить задачу сравнительно просто. На обрабатываемую поверхность со следами предшествующей обработки подают струю антикоррозионной жидкости со взвешенными частицами абразивного порошка (рис. 88, а). Водно-абразивная суспензия перемещается под давлением с большой скоростью. Частицы абразива ударяются о поверхность заготовки и сглаживают микронеровности, создавая эффект полирования. Интенсивность съема обрабатываемого материала регулируют зернистостью порошка, давлением струи и углом β. Изменяя скорость полета и размер свободных абразивных зерен, можно увеличить или уменьшить степень пластической деформации и шероховатость поверхности. Одновременно с получением необходимого микрорельефа этот способ обработки создает полезное поверхностное упрочнение. Степень упрочнения поверхности возрастает пропорционально увеличению размера абразивных зерен в струе. Жидкостная пленка, покрывающая обрабатываемую поверхность, играет очень важную роль. Абразивные зерна, попадающие на микровыступы, легко преодолевают сопротивление пленки и удаляют металл. Те же зерна, которые попадают на впадины, встречают большее сопротивление жидкости, и съем материала замедляется. Шероховатость поверхности уменьшается. Водная эмульсия может подаваться на обрабатываемую поверхность совместно с воздухом. Поэтому отдельные абразивные частицы не имеют водной пленки, что немного повышает эффект резания. Если струю подают без воздуха, каждая частица абразива оказывается окруженной водной пленкой. Эффект резания в этом случае снижается, а обработанная поверхность становится более блестящей. В качестве абразива часто применяют электрокорунд. В суспензии содержится 30—35% абразива (по массе). На рис. 88, б показана схема жидкостного полирования. Обрабатываемая заготовка 3 сложного профиля перемещается (v1, snp) в камере 4 таким образом, что все ее участки подвергаются полированию. Абразивная суспензия 1, помещенная в баке 2, подается насосом 6 в рабочую камеру через твердосплавное сопло 5. Обработанная суспензия падает обратно в бак 2 и может быть использована многократно. Более экономичной считают ту установку, которая полнее преобразует потенциальную энергию сжатого воздуха в кинетическую энергию, получаемую абразивными частицами. Для работы могут быть использованы одновременно два сопла. Наибольший съем металла получают при угле β = 45°. Метод жидкостного полирования особенно успешно применяют при обработке фасонных внутренних поверхностей. В этом случае сопло вводят в полость заготовки, которая совершает вращательные и поступательные перемещения в зависимости от профиля полируемой поверхности. Жидкостное полирование, так же как и полирование эластичными кругами и лентами, не повышает точности размеров и формы, а только уменьшает шероховатость поверхности. Лекция 30. Методы отделочной отработки поверхностей (продолжение) Притирка поверхностей Поверхности деталей машин, обработанные на металлорежущих стайках, всегда имеют отклонения от правильных геометрических форм и заданных размеров. Эти отклонения могут быть незначительными. Волнистость, неплоскостность, нецилиндричность и другие погрешности, возникающие на заготовках после обработки и невидимые невооруженным глазом, могут быть устранены притиркой (доводкой). Этим методом достигается наивысшая точность и наименьшая шероховатость поверхности. Процесс осуществляют с помощью притиров соответствующей геометрической формы. На притир наносят притирочную пасту или мелкий абразивный порошок со связующей жидкостью. Материал притиров должен быть, как правило, мягче обрабатываемого материала. Паста или порошок внедряются в поверхность притира и удерживаются ею, но так, что при относительном движении каждое абразивное зерно может снимать весьма малую стружку. Поэтому притир можно рассматривать как очень точный абразивный инструмент, зерна которого одновременно обрабатывают всю или часть поверхности заготовки. Притир или заготовка должны совершать разнонаправленные движения. Наилучшие результаты дает процесс, в ходе которого траектории движения каждого зерна не повторяются. Микронеровности сглаживаются за счет совокупного химико-механического воздействия на поверхность заготовки. Вначале микронеровности соприкасаются с притиром по малой контактной площади — срезаются только их вершины. Этот этап обработки характеризуется большими давлением и пластическим деформированием поверхности. С увеличением контактной площади давление уменьшается, снижается толщина съема металла. На последнем этапе обработки удаляются в основном окисные пленки, образующиеся на поверхности. Большую роль играет вязкость связующей жидкости. Толщина жидкостного слоя между притиром и заготовкой должна быть меньше величины выступающих из притира режущих зерен и определяется вязкостью жидкости. Если толщина жидкостного слоя будет больше размеров абразивных зерен, то процесс притирки прекратится, так как зерна не будут соприкасаться с обрабатываемой поверхностью. В качестве абразива для притирочной смеси используют порошки электрокорунда, карбида кремния, карбида бора, окиси хрома, окиси железа и др. Притирочные пасты состоят из абразивных порошков и химически активных веществ, например олеиновой и стеариновой кислот, играющих одновременно роль связующего материала. Рис. 89. Схемы притирки поверхностей Материалами для притиров являются серый чугун, бронза, красная медь, дерево. В качестве связующей жидкости используют машинное масло, керосин, стеарин, вазелин. Схема притирки наружной цилиндрической поверхности приведена на рис. 89, а. Притир 1 представляет собой втулку с прорезями, которые необходимы для полного прилегания притира под действием сил Р к обрабатываемой поверхности по мере ее обработки. Притиру сообщают возвратно-вращательное движение Vx и одновременно возвратно-поступательное движение v2. Возможно также равномерное вращательное движение заготовки 2 с наложением на него движения v2. Аналогичные движения осуществляются при притирке отверстий (рис. 89, б), однако притир должен равномерно разжиматься действием сил Р. Приведенные схемы осуществляют вручную и на металлорежущих станках. Плоские поверхности можно притирать также вручную или на специальных доводочных станках (рис. 89, в). Заготовки 4 располагают между двумя чугунными дисками 3 в окнах сепаратора 5. Диски-притиры имеют плоские торцовые поверхности и вращаются в противоположных направлениях и с разными частотами вращения. Сепаратор относительно дисков расположен эксцентрично на величину е. Поэтому при вращении дисков притираемые детали совершают сложные движения со скольжением, и металл снимается одновременно с их параллельных торцов. Станок можно использовать и для доводки коротких цилиндрических деталей с отверстиями, с помощью которых они ориентируются в сепараторе. Разновидностью притирки является доведение двух сопрягающихся в собранной машине деталей до нужной плотности контакта (в частности, для герметизации). Это достигается трением одной детали о поверхность другой при наличии в стыке абразивного ворошка со связующей жидкостью. По окончании процесса детали промывают. Хонингование Хонингование применяют для получения отверстий высокой точности и малой шероховатости, а также для создания специфического микропрофиля обработанной поверхности в виде сетки. Такой профиль необходим для удержания на стенках отверстия смазки при работе машины (например, двигателя внутреннего сгорания). Чаще обрабатывают сквозные и реже ступенчатые отверстия, как правило, неподвижно закрепленных заготовок. Поверхность заготовки обрабатывают мелкозерпистыми абразивными брусками, которые закрепляют в хонинговальной головке (хоне), являющейся режущим инструментом. Инструмент вращается и одновременно движется возвратно-поступательно вдоль оси обрабатываемого отверстия цилиндра высотой h (рис. 90, а). Соотношение скоростей v1 и v2 указанных движений составляет 1,5—10,0 и определяет условия резания. Скорость v1 для стали составляет 45—60, а для чугуна и бронзы — 60—75 м/мин. Описываемая схема обработки по сравнению с внутренним шлифованием имеет преимущества: отсутствует упругий отжим инструмента, реже наблюдаются вибрации, более плавная работа. Сочетание движений v1 и v2 приводит к тому, что на обрабатываемой поверхности появляется сетка микроскопических винтовых царапин — следов перемещения абразивных зерен. Угол 0 пересечения этих следов зависит от соотношения скоростей. Поэтому необходимый вид сетки на поверхности отверстия можно получать в ходе хонингования. На рис. 90, б дана развертка внутренней цилиндрической поверхности заготовки и схема образования сетки. Крайние нижнее 1 и верхнее 2 положения абразивных брусков устанавливают так, чтобы у инструмента создавался перебег п. Он необходим для того, чтобы образующие отверстия получались прямолинейными и оно имело бы правильную геометрическую форму. Совершая вращательное движение, абразивные бруски при каждом двойном ходе начинают резание с новых положений 3 хода с учетом смещения t по углу. Поэтому исключается наложение траекторий абразивных зерен. Вид сетки на обрабатываемой поверхности можно изменить дополнительными колебательными движениями, сообщаемыми инструменту механическим вибратором (вибрационное хонингование). Траектория абразивных зерен представляет собой сложную гипоциклическую кривую. Поэтому на обработанной поверхности возникают как бы две сетки, соответствующие черновому и чистовому хонингованию. Абразивные бруски всегда контактируют с обрабатываемой поверхностью, так как могут раздвигаться в радиальных направлениях механическими, гидравлическими или пневматическими устройствами. Давление брусков должно контролироваться. Минимальное давление возникает при ультразвуковом хонинговании. В этом случае уменьшается засаливание брусков, так как частицы снятого металла легче отделяются от абразивов. Хонингованием исправляются такие погрешности предыдущей обработки, как овальность, конусообразность, нецилиндричность и др., если общая величина снимаемого слоя не превышает 0,01—0,2 мм. Погрешности же расположения оси отверстия (например, увод ее или криволинейность) этим методом не исправляются, так как режущий инструмент самоустанавливается по отверстию. Это достигается шарнирным закреплением инструмента в шпинделе, которое может передать только вращательное движение. Наиболее распространены две схемы процесса хонингования, отличающиеся друг от друга методом осуществления разжима (радиальной подачи) абразивных брусков: 1) с постоянным номинальным давлением брусков на заготовку; 2) с дозированной радиальной подачей брусков на каждый двойной ход головки. Первую схему применяют чаще. Различают предварительное и чистовое хонингование. Предварительное хонингование используют для исправления погрешностей предыдущей обработки, а чистовое — для получения малой шероховатости поверхности. Хонинговальные бруски изготовляют из электрокорунда или карбида кремния, как правило, на керамической связке. Для чистового хонингования хорошие результаты дают бруски на бакелитовой связке. Используют бруски зернистостью 3—8, а также М20 и М28. Все шире применяют алмазное хонингование, главное преимущество которого состоит в эффективном исправлении погрешностей геометрической формы обрабатываемого отверстия. Бруски закрепляют в державках хона приклеиванием ацетоно-целлулоидным клеем или жидким стеклом. Державки располагают равномерно по цилиндрической поверхности хонинговальной головки. Конструкции головок предусматривают расположение в них механизма радиального перемещения державок с брусками. Кроме того, головки имеют устройства для регулирования положения брусков. Число брусков в хонинговальной головке должно быть кратно трем. Поэтому в головке всегда найдутся три бруска, которые будут обрабатывать реальную поверхность отверстия, имеющего погрешности формы от предыдущей обработки, и превращать ее в поверхность, близкую к круговому цилиндру. Хонингование производят при обильном охлаждении зоны резания. Смазочно-охлаждающими жидкостями являются керосин, смесь керосина (80—90%) и веретенного масла (20—10%), а также водно-мыльные эмульсии. Жидкости способствуют удалению абразивных зерен, оставшихся в порах обрабатываемых поверхностей. Для хонингования используют одно - и многошпиндельные станки. Некоторые станки оснащают устройствами, позволяющими измерять на ходу обрабатываемое отверстие и выключать станки по достижении необходимого размера отверстия. Суперфиниш Суперфинишем в основном уменьшают шероховатость поверхностей, оставшуюся от предыдущей обработки. При этом изменяются высота и вид микровыступов, обработанные поверхности имеют сетчатый рельеф, а каждый микровыступ округляется и поверхность становится очень гладкой. При этом возникают более благоприятные условия взаимодействия трущихся поверхностей. Суперфинишем обрабатывают плоские, цилиндрические (наружные и внутренние), конические и сферические поверхности из закаленной стали, реже из чугуна и бронзы. Поверхности обрабатывают абразивными брусками, устанавливаемыми в специальной головке. Характерным для суперфиниша является колебательное движение брусков наряду с движением заготовки. Процесс резания происходит при давлении брусков (0,5—3,0) 105 Н/м2 и в присутствии смазки малой вязкости. Схема обработки наружной цилиндрической поверхности приведена на рис. 91, а. Плотная сетка микронеровностей создается сочетанием трех движений: вращательного sкp заготовки, возвратно-поступательного snp и колебательного брусков со скоростью v. Амплитуда колебаний брусков составляет 1,5—6,0 мм, а частота 400—1200 колебаний в минуту. Движение snp ускоряет процесс съема металла и улучшает однородность поверхности. Бруски, будучи подпружиненными, самоустанавливаются по обрабатываемой поверхности. Соотношение скоростей sкp и v в начало обработки составляет 2—4, в конце 8—16. Процесс характеризуется сравнительно малыми скоростями резания (5—7 м/мин). Важную роль играет смазочно-охлаждающая жидкость. Масляная пленка покрывает обрабатываемую поверхность, но наиболее крупные микровыступы (рис. 91, б) прорывают ее и в первую очередь срезаются абразивом. Давление брусков на выступы оказывается большим. По мере дальнейшей обработки давление снижается, так как все большее число выступов прорывает масляную пленку. Наконец наступает такой момент (рис. 91, в), когда давление бруска не может разорвать пленку, она становится сплошной. Создаются условия для жидкостного трения. Процесс отделки автоматически прекращается. В качестве жидкости используют смесь керосина (80—90%) с веретенным или турбинным маслом (20—10%). Рис. 91. Схема отделки суперфинишированием При обработке сталей лучших результатов достигают при применении брусков из электрокорунда, при обработке чугуна и цветных металлов — при применении брусков из карбида кремния. В большинстве случаев применяют бруски на керамической или бакелитовой связке. Большое влияние на ход процесса оказывает твердость брусков. Если твердость при обработке данного материала завышена, бруски засаливаются и плохо режут; если твердость занижена, происходит непрекращающееся самозатачивание и бруски быстро изнашиваются, поверхность оказывается низкого качества. Применение алмазных брусков увеличивает не только производительность обработки, но и стойкость инструмента в 80—100 раз. Алмазные бруски работают на тех же режимах, что и абразивные, но с давлением, большим на 30—50%. Величина и форма абразивных брусков зависят от размера и конфигурации обрабатываемой заготовки. Для коротких открытых участков детали длина брусков должна быть равна длине обрабатываемой поверхности или немного больше ее, при наличии уступов с двух сторон длина брусков немного меньше длины обрабатываемой поверхности. Чаще для суперфиниша применяют два бруска, а при обработке крупных деталей — три или четыре. Обычно суперфиниширование не устраняет погрешностей формы, полученных на предшествующей обработке (волнистости, конусообразности, овальности и др.), но при усовершенствовании процесса можно снимать увеличенные слои металла, использовать особые режимы обработки. В этом случае погрешности предыдущей обработки значительно уменьшаются. Дальнейшим развитием суперфиниша является микрофиниш, который характеризуется повышенным давлением абразивных брусков на поверхность и жесткой фиксацией их после подхода к заготовке. Микрофиниш значительно уменьшает погрешности предшествующей обработки.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 876; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.207.112 (0.013 с.) |