Вычисление криволинейного интеграла первого рода. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вычисление криволинейного интеграла первого рода.



Параметризуем дугу L: AB x = x(t), y = y(t), z =z (t). Пусть t0 соответствует точке A, а t1 соответствует точке B. Тогда криволинейный интеграл первого рода сводится к определенному интегралу ( - известная из 1 семестра формула для вычисления дифференциала длины дуги):

Пример. Вычислить массу одного витка однородной (плотность равна k) винтовой линии: .

.

Криволинейный интеграл 2 рода.

Задача о работе силы.

Какую работу производит сила F(M) при перемещении точки M по дуге AB? Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).

1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и (условие А)

2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции

3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .

4. Переходя к пределу при условии (условие В), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):

. Часто обозначают

Теорема существования.

Пусть вектор - функция непрерывна на кусочно-гладкой дуге L[12]. Тогда криволинейный интеграл второго рода существует как предел интегральных сумм.

.

 

 

Замечание. Предел этот не зависит от

- способа выбора разбиения, лишь бы выполнялось условие А

- выбора «отмеченных точек» на элементах разбиения,

- способа измельчения разбиения, лишь бы выполнялось условие В

 

Свойства криволинейного интеграла 2 рода.

 

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, используя свойство скалярного произведения, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

 

2. Аддитивность.
Если , то = + .

Доказательство. Выберем разбиение области L так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы L1, так и элементы L2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

3. Ориентируемость.

= -

Доказательство. Интеграл по дуге –L, т..е. в отрицательном направлении обхода дуги есть предел интегральных сумм, в слагаемых которых вместо стоит (). Вынося «минус» из скалярного произведения и из суммы конечного числа слагаемых, переходя к пределу, получим требуемый результат.

Заметим, что свойство ориентируемости в криволинейном интеграле первого рода отсутствует. Зато в криволинейном интеграле второго рода отсутствуют свойства интегрирования неравенств, теорема об оценке и теорема о среднем, которые есть в криволинейном интеграле первого рода.

 

Вычисление криволинейного интеграла второго рода.

.

Пусть . Запишем .

Тогда криволинейный интеграл второго рода можно записать в виде

.

Параметризуем дугу L = AB: ,

непрерывны, так как дуга гладкая. Подставим эти выражения в криволинейный интеграл, он превратится в определенный интеграл по параметру.

= .

Пример. Вычислить , где - один виток винтовой линии, .

 

= .

Пример. Вычислить интеграл по трем различным дугам, соединяющим точки A(0,0,), B(1,1,) - ломаная, соединяющая точки A, C(1,0), B,

1) ,

2)

3)

Пример. Показать, что по всем указанным выше дугам.

 

 

Лекция 6. Формула Грина.

 

 

Теорема (формула) Грина. Пусть G – плоская односвязная область с кусочно-гладкой границей L. Пусть функции P(x, y), Q(x, y) непрерывны и имеют непрерывные частные производные по своим переменным в области G и на L.

Тогда справедлива формула Грина

.

Доказательство. 1) Назовем плоскую область D (в плоскости OXY) правильной, если любая прямая, параллельная координатной оси (OX или OY) пересекает область не более, чем в двух точках. Можно показать, что область G можно представить как объединение конечного числа правильных областей .

Тогда по свойству аддитивности двойной интеграл в правой части формулы Грина равен сумме двойных интегралов по правильным областям. Криволинейный интеграл в левой части равен сумме криволинейных интегралов по границам правильных областей, так как криволинейные интегралы по общим границам любых правильных областей различны по знаку из-за различных направлений обхода границы и взаимно уничтожаются при суммировании.

Поэтому доказательство может быть проведено для правильной области G.

2) Пусть G – правильная область. Так как P, Q могут быть произвольными функциями, то формула Грина сводится двум формулам и , каждую из которых надо доказать. Докажем первую формулу, вторая доказывается аналогично.

= = = =

 



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 472; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.152.43.79 (0.013 с.)