Свойства тройного интеграла. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Свойства тройного интеграла.



1. Линейность
а) = +

б) =
Эти свойства, как и для двойного интеграла, доказываются «через интегральные суммы». Составляют интегральную сумму для интегралов, стоящих в левой части равенства, в ней делают нужную операцию (это возможно, т.к. число слагаемых конечно) и получают интегральные суммы для интегралов в правой части. Затем, по теореме о предельном переходе в равенстве, переходят к пределу, и свойство доказано.

2. Аддитивность (по множеству)
= +

Доказательство проводится, как и ранее, через интегральные суммы с использованием замечания к теореме существования.

Разбиение выбирается и измельчается так, чтобы граница областей V, W состояла из границ элементов разбиения (это можно сделать, учитывая замечание). Тогда интегральная сумма для интеграла в левой части равенства равна сумме двух интегральных сумм, каждая для своего для интеграла в правой части равенства. Переходя к пределу в равенстве, получаем требуемое соотношение.

3. , где – объем области V.
Интегральная сумма для интеграла в левой части =

4. Если f(x, y, z) ³g(x, y, z), то ³ .
Переходя к пределу в неравенстве ³ (по теореме о переходе к пределу в неравенстве), получим требуемое соотношение.
Следствие. Если f(x, y, z) ³0, то ³0.

5. Теорема об оценке интеграла. Если m £f(x, y, z) £M, то mV£ £MV.
Интегрируя неравенство m £f(x, y, z) £M, по свойству 4 получим требуемое неравенство.

6. Теорема о среднем. Пусть выполнены требования теоремы существования. Тогда
Существует точка С в области V, такая, что f(C) = .

Доказательство. Так как функция непрерывна на замкнутом ограниченном множествеV, то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве , то в некоторой точке функция должна принимать это значение. Следовательно, f(C) = .

 

Вычисление тройного интеграла в декартовой системе координат.

 

y(x,y)
j(x,y)

Пусть пространственное тело проектируется на плоскость OXY в область D, а на ось OZ в отрезок [c, d].Пусть «верхняя» граница тела описывается уравнением поверхности z = y(x, y), «нижняя» – уравнением z = j(x, y). Пусть элемент DV пространственного тела V проектируется на плоскость OXY в область Dxy, а на ось OZ в отрезок [z, z+Dz]. Для того чтобы вычислять тройной интеграл как предел интегральных сумм, нужно в интегральной сумме перебирать эти элементы по определенному алгоритму.  

Если сначала перебирать элементы в столбце над областью Dxy, от нижней границы до верхней (внутренний интеграл), а затем перемещать область Dxy в D (внешний двойной интеграл), то получим повторный интеграл .

Если сначала перебирать элементы в слое [z, z+Dz] (внутренний интеграл), а затем.перемещать слой на [c, d], (внешний интеграл), то получим повторный интеграл .И в том, и в другом случае тройной интеграл сводится к определенному и двойному интегралам.

Пример. Вычислить массу тетраэдра плотностью f(x, y, z) = z, ограниченного плоскостями x+y+z = 1, x+z =1, x+y = 1, y+z =1.

 

 

Лекция 4. Приложения тройного интеграла.

 

Замена переменных в тройном интеграле.

Теорема. Пусть с помощью непрерывных функций x = x(u, v, w), y = y(u, v, w), z =z(u, v, w) имеющих непрерывные частные производные установлено взаимно однозначное соответствие пространственно односвязных ограниченных, замкнутых областей Dxyz, Du,v,w с кусочно-гладкой границей. Тогда , где - якобиан (определитель Якоби).

Теорема приведена без доказательства.

 

Цилиндрическая система координат.

 
 
M


Вводятся цилиндрические координаты r, j, h. x = r cosj, y = r sinj, z = h. Вычислим якобиан

 

Пример Вычислить объем пространственного тела, заключенного между цилиндрической поверхностью и эллиптическим параболоидом . .

 

 

 

Сферическая система координат.

j
x
j
q
r
z
y

Сферические координаты j, r, q. x = r sinq cosj y= r sinq sinj z = r cosq. Вычислим якобиан

 

=

Пример. Найти массу части шара (с центром в начале координат, радиусом R), находящейся в первом октанте, если плотность вещества шара в каждой точке шара пропорциональна расстоянию этой точки от оси OZ.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 859; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.234.55.154 (0.016 с.)