Краткий курс математического анализа 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Краткий курс математического анализа



Галкин С.В.

 

Краткий курс математического анализа

В лекционном изложении

для студентов МГТУ им. Н. Э. Баумана

(третий семестр)

 

Москва 2005.

 

 

Часть1 Кратные и криволинейные интегралы, теория поля.

Лекция 1.

Двойной интеграл.

Задача об объеме цилиндрического тела.

К определенному интегралу мы пришли от задачи о площади криволинейной трапеции. К двойному интегралу мы приходим, решая задачу об объеме цилиндрического тела.

- Рассмотрим, например, прямой круговой цилиндр с высотой h и радиусом основания R его объем равен

- Объем цилиндра той же высоты, в основании которого лежит эллипс с полуосями равен .

- Объем цилиндра той же высоты, с площадью основания , равен .

Пусть надо вычислить объем цилиндрического тела, в основании которого лежит область с площадью , а высота изменяется от точки к точке так, что конец ее описывает некоторую поверхность (). Тогда логично разбить область на области малого размера – организовать разбиение области на области – элементы разбиения. На каждом элементе отметим точку M(x,y) и построим над этим элементом прямой круговой цилиндр, высота которого постоянна для всех точек элемента и равна . Вычислим объем этого элементарного цилиндра. Просуммируем объемы всех элементарных цилиндров. Эта сумма и даст приближенно искомый объем цилиндрического тела тем точнее, чем меньше будут размеры элементов разбиения. Этот алгоритм используем для построения двойного интеграла

 

Двойной интеграл [1]

.

1. Организуем разбиение области D на элементы – области так, чтобы эти элементы не имели общих внутренних точек и (условие А) 2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции 3. Построим интегральную сумму , где - площадь 4. Переходя к пределу при условии (условие В), получим двойной интеграл как предел интегральных сумм:

 

Теорема существования [2].

Пусть функция непрерывна в замкнутой односвязной области D[3]. Тогда двойной интеграл существует как предел интегральных сумм.

.

Замечание [4]. Предел этот не зависит от

- способа выбора разбиения, лишь бы выполнялось условие А

- выбора «отмеченных точек» на элементах разбиения,

- способа измельчения разбиения, лишь бы выполнялось условие В

 

Свойства двойного интеграла [5].

 

1. Линейность
а) свойство суперпозиции . = +

б) свойство однородности . =

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Они равны интегральным суммам для правых частей равенств, так как число слагаемых конечно. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

 

2. Аддитивность.
Если , то = +

Доказательство. Выберем разбиение области D так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы D1, так и элементы D2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

 

3. -площадь области D.

4. Если в области D выполнено неравенство , то (неравенство можно интегрировать).

Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.

Заметим, что, в частности, возможно

5. Теорема об оценке.

Если существуют константы , что , то

Доказательство. Интегрируя неравенство (свойство 4), получим . По свойству 1 константы можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.

 

6. Теорема о среднем (значении интеграла).

Существует точка , что .

Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на , получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве , то в некоторой точке функция должна принимать это значение. Следовательно, .

Геометрический смысл теоремы состоит в том, что существует цилиндр постоянной высоты , объем которого равен объему цилиндрического тела

 

Лекция 3 Тройной интеграл.

Лекция 4. Приложения тройного интеграла.

 

Задача о работе силы.

Какую работу производит сила F(M) при перемещении точки M по дуге AB? Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).

1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и (условие А)

2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции

3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .

4. Переходя к пределу при условии (условие В), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):

. Часто обозначают

Теорема существования.

Пусть вектор - функция непрерывна на кусочно-гладкой дуге L[12]. Тогда криволинейный интеграл второго рода существует как предел интегральных сумм.

.

 

 

Замечание. Предел этот не зависит от

- способа выбора разбиения, лишь бы выполнялось условие А

- выбора «отмеченных точек» на элементах разбиения,

- способа измельчения разбиения, лишь бы выполнялось условие В

 

Лекция 6. Формула Грина.

 

 

Теорема (формула) Грина. Пусть G – плоская односвязная область с кусочно-гладкой границей L. Пусть функции P(x, y), Q(x, y) непрерывны и имеют непрерывные частные производные по своим переменным в области G и на L.

Тогда справедлива формула Грина

.

Доказательство. 1) Назовем плоскую область D (в плоскости OXY) правильной, если любая прямая, параллельная координатной оси (OX или OY) пересекает область не более, чем в двух точках. Можно показать, что область G можно представить как объединение конечного числа правильных областей .

Тогда по свойству аддитивности двойной интеграл в правой части формулы Грина равен сумме двойных интегралов по правильным областям. Криволинейный интеграл в левой части равен сумме криволинейных интегралов по границам правильных областей, так как криволинейные интегралы по общим границам любых правильных областей различны по знаку из-за различных направлений обхода границы и взаимно уничтожаются при суммировании.

Поэтому доказательство может быть проведено для правильной области G.

2) Пусть G – правильная область. Так как P, Q могут быть произвольными функциями, то формула Грина сводится двум формулам и , каждую из которых надо доказать. Докажем первую формулу, вторая доказывается аналогично.

= = = =

 

Формула Ньютона – Лейбница.

Пусть выполнены условия теоремы о полном дифференциале и пусть выражение

- полный дифференциал, а функция - потенциал.

Тогда справедлива формула Ньютона – Лейбница

, где - потенциал.

Доказательство. В теореме о полном дифференциале доказано, что потенциал можно записать в виде . Так как интеграл не зависит от пути интегрирования, то дугу, соединяющую точки (x1, y1), (x2, y2) можно провести через точку (x0, y0). Поэтому = + = - = .

Лекция 8

Скалярное и векторное поля.

Говорят, что в области (плоской или пространственной) задано скалярное поле j (M), если в этой области задана скалярная функция j (M).

Говорят, что в области (плоской или пространственной) задано векторное поле (M), если в этой области задана векторная функция (M).

Например, масса или температура частиц в комнате – скалярные поля, скорость или силы взаимодействия частиц – векторные поля.

В интегралах первого рода:двойных, криволинейных, поверхностных мы имели дело со скалярным полем – распределением масс точек кривой или поверхности в пространстве.

В интегралах второго рода вычислялись характеристики векторных полей: работа векторного поля (силового поля) в криволинейном интеграле, поток векторного поля в поверхностном интеграле.

Рассмотрим подробнее основные характеристики скалярных и векторных полей.

 

Скалярные поля.

 

Линии уровня плоского поля j (x, y) – кривые, на которых значения функции постоянны j (x, y) = С.

Например, линии равной высоты, нанесенные на географической карты (h (x, y) = 0 – уровень моря, h = 7000м – немногие горные вершины, h = - 10000м – самые глубокие океанские впадины).

Поверхности уровня пространственного поля j (x, y, z) – поверхности, на которых значения функции постоянны j (x, y, z) = С.

Например, поверхности равной температуры или давления в атмосфере. Любая линия на поверхности уровня – это линия уровня.

Пример. Задано поле . При С > 0 поверхности уровня – однополостные гиперболоиды, при С = 0 поверхность уровня – конус, при С < 0 поверхности уровня – двуполостные гиперболоиды.

Линии или поверхности различных уровней не пересекаются.

Чем чаще (гуще) поверхности или линии уровня, тем интенсивнее изменение поля.

Градиент поля – вектор .

Утверждение. Градиент скалярного поля ортогонален его поверхности уровня.

Доказательство. Пусть точка (x, y, z) остается на поверхности уровня g(x, y, z) = 0 при вариациях переменных. Тогда равенство превращается в тождество, а тождество можно дифференцировать.

.

Вектор (x, y, z) - это вектор, касательный в точке (x, y, z) к любой кривой, лежащей на поверхности уровня, проходящей через эту точку. Поэтому в точке (x, y, z) вектор градиента ортогонален всем касательным к линии уровня, проходящим через эту точку. Следовательно, он ортогонален касательной плоскости к поверхности уровня и направлен по нормали к поверхности уровня.

 

Производная скалярного поля по направлению определяется как . Известно из теории функций многих переменных (выпуск V учебника), что производная по направлению есть проекция градиента на данное направление

.

Пример. Найти производную скалярного поля g(x, y, z) = x2 + y2 + z3 по направлению {1,3,2} в точке (1,0,4)

.

 

Векторное поле.

 

Векторная линия -линия, в каждой точке которой вектор поля направлен по касательной к ней.

Уравнения векторной линии легко получить из условия коллинеарности векторов поля и касательной

.

Пример. Написать уравнения векторных линий векторного поля

- линии уровня – окружности (С>0).

Векторной трубкой называется поверхность, образованная векторными линиями.

 

Свойства дивергенции.

1) Линейность.

 

.

2) , где - постоянное векторное поле.

3) , где - скалярное поле.

= = .

Лекция 9 Формула Стокса.

Ротор векторного поля.

Назовем ротором векторного поля вектор

Свойства ротора.

1) Линейность

 

= +

= .

 

2) - постоянное векторное поле.

 

 

3)

=

+ = .

 

Теорема Стокса.

 

Пусть пространственно односвязная область V содержит кусочно-гладкую поверхность с кусочно-гладкой границей .

Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные по своим аргументам до второго порядка включительно в области V.

Тогда справедлива формула Стокса

Замечание. Нормаль к поверхности проведена так, чтобы наблюдатель, находясь на конце вектора нормали, видел бы обход контура , совершающимся в положительном направлении (так, чтобы область, границей которой является контур, при обходе контура находилась бы «по левую руку»).

 

 

Доказательство теоремы Стокса.

Как и формула Остроградского – Гаусса, формула Стокса состоит из трех независимых частей (в силу произвольности компонент векторного поля). Докажем одну из этих частей, остальные формулы доказываются аналогично. Докажем - часть формулы Стокса, в которой содержится только компонента P. Предположим, что поверхность описывается уравнением . Тогда нормаль к поверхности

представляет собой вектор

Отсюда видно, что . Вспомним еще, что .

(на поверхности , поэтому под интегралом стоит частная производная P по y с учетом зависимости z от y на поверхности )

=

Используем формулу Грина для области D с ее границей . Ее можно записать в виде

. Нам понадобится только та ее часть, которая относится к функции P . Продолжаем равенство дальше.

= .

В самом деле, на контуре , а переменные x, y на том и другом контуре те же, так как контур - это проекция контура на плоскость OXY (параллельно оси OZ).

Одна из частей формулы Стокса доказана.

 

Линейным интегралом векторного поля по дуге L называется криволинейный интеграл .

Линейный интеграл имеет смысл работы векторного поля при перемещении по дуге.

 

Циркуляцией векторного поля называется линейный интеграл по замкнутому контуру.

.

Вводя эти понятия, можно записать формулу Стокса в «полевой» форме

.

 

Мы определили ротор векторного поля в декартовой системе координат, однако ротор – это характеристика самого векторного поля Поэтому необходимо дать определение ротора, которое не зависит от выбора системы координат.

 

Инвариантное определение ротора.

Рассмотрим произвольную точку M в области V. Проведем через нее поверхность , границей которой служит контур . Пусть поверхность и контур удовлетворяют условиям теоремы Стокса. По теореме о среднем для поверхностного интеграла и формуле Стокса получим

.

Здесь, как и ранее - обозначение области и ее площади. Из этого соотношения, стягивая контур к точке M, получим

Это и есть инвариантное определение ротора.

Правая часть формулы – это поверхностная плотность циркуляции векторного поля (энергии в точке M вращения векторного поля или работы векторного поля при вращении вокруг некоторого направления, определяемого вектором ). Левая часть – это проекция ротора на это направление.

Если направление совпадает с направлением ротора и - единичный вектор, то левая часть равна модулю ротора. Поэтому модуль ротора векторного поля равен максимальному значению поверхностной плотности циркуляции векторного поля.

Левая часть достигает максимума при коллинеарности направления и ротора векторного поля. Поэтому направление ротора векторного поля – это то направление, вокруг которого поверхностная плотность циркуляции векторного поля – наибольшая.

Пример. Найти ротор линейной скорости вращения с постоянной угловой скоростью

 

Векторное поле линейной скорости .

,

 

Ранее была сформулирована теорема о полном дифференциале для пространственной кривой. В ее доказательстве не хватало только одного пункта – перехода от пункта 3) к пункту 2). Все остальное доказывается аналогично случаю плоской кривой.

 

Оператор Гамильтона

Оператор Гамильтона .

Применим оператор Гамильтона к скалярному полю .

Оператор Гамильтона представляет собой вектор-оператор. Его можно скалярно или векторно умножить на векторное поле .

Это дифференциальные операции первого порядка над скалярным и векторным полями. От скалярного поля можно взять градиент, от векторного поля можно взять дивергенцию и ротор.

Гармоническое поле.

Скалярное поле называется гармоническим, если

- уравнение Лапласа.

Векторное поле называется гармоническим, если оно потенциальное (), а потенциал - гармоническое скалярное поле, т.е. .

Теорема. Для того, чтобы векторное поле было гармоническим, необходимо и достаточно чтобы оно было соленоидальным и потенциальным.

Необходимость. Если векторное поле - гармоническое, то оно потенциальное, т.е. , тогда оно соленоидально, так как .

Достаточность. Если векторное поле потенциальное, то . Так как оно еще и соленоидально, то 0 = . Следовательно, поле потенциально и его потенциал удовлетворяет уравнению Лапласа, поэтому векторное поле – гармоническое.

 

Так как гармоническое поле потенциально и соленоидально, то его свойства – свойства соленоидального поля и свойства потенциального поля.

 

Свойства сходящихся рядов.

1. Члены сходящегося ряда можно умножить на одно и то же число k. Полученный ряд будет сходиться, а сумма его будет в k раз больше суммы исходного ряда.

 

Доказательство. Для второго ряда частичная сумма будет равна . По теореме о предельном переходе в равенстве .

 

2. Члены сходящегося ряда можно группировать. Полученный ряд будет сходиться, и сумма его не изменится.

 

Сгруппируем члены ряда, например, так

. Видно, что частичные суммы группированного ряда представляют собой подпоследовательность последовательности частичных сумм исходного ряда. Так как последовательность сходится, то и подпоследовательность сходится к тому же пределу.

 

3. В сходящемся ряде можно отбросить конечное число первых членов . Полученный ряд будет сходиться, а его сумма будет меньше суммы исходного ряда на B.

 

Запишем частичные суммы второго ряда . По теореме о предельном переходе в равенстве .

Замечание. Ряд, полученный из исходного ряда отбрасыванием первых k членов, называется остатком ряда и обозначается

 

4. Для того чтобы ряд сходился необходимо и достаточно, чтобы сходился остаток ряда. (Докажите это самостоятельно, используя доказательство свойства 3).

Поэтому сходимость ряда можно исследовать, «начиная с некоторого n».

 

5. Сходящиеся ряды можно складывать (или вычитать), получая сходящийся ряд с суммой, равной сумме (или разности) сумм исходных рядов.

 

Рассмотрим два сходящихся ряда и . Рассмотрим ряд , где . . Переходя к пределу в равенстве, получим .

 

Примеры.

1. Ряд –5+7-8+100+1+0,5+0,25+0,125+… сходится. В самом деле, отбросив первых четыре члена ряда (свойства 3,4), получим сходящуюся бесконечно убывающую геометрическую прогрессию

2. Ряд расходится. Он представляет собой сумму двух рядов: сходящейся геометрической прогрессии (нечетные члены) и гармонического ряда (четные члены). Если бы этот ряд сходился, то, вычитая из него почленно сходящийся ряд , мы должны были бы по свойству 5 получить сходящийся ряд. А получаем расходящийся гармонический ряд. Следовательно, исходный ряд расходится.

3. Ряд сходится. Рассмотрим сходящийся ряд . Группируем его члены

, получаем исходный ряд. Следовательно, он сходится (свойство 2), и его сумма равна 1.

 

 

Интегральный признак Коши.

    Пусть при определена непрерывная, не возрастающая функция f(x), такая, что . Тогда ряд сходится тогда и только тогда, когда сходится несобственный интеграл .    

 

Доказательство. - это площадь под графиком функции при .

Так как (сумма площадей прямоугольников) ограничивает площадь под графиком функции снизу, а ограничивает ее сверху, то .

. Достаточность. Если интеграл сходится, то , поэтому последовательность ограничена сверху. Так как эта последовательность не убывает, то по теореме Вейерштрасса . Поэтому ряд сходится.

Необходимость. Если ряд сходится, то , а по необходимому признаку сходимости ряда при . Поэтому последовательность (неубывающая, так как ) ограничена сверху. Следовательно, по теореме Вейерштрасса , т.е. несобственный интеграл сходится.

Если ряд расходится, то и интеграл расходится и наоборот. Это легко доказывается от противного.

Поэтому говорят, что несобственный интеграл и ряд сходятся или расходятся «одновременно», т.е. один из них сходится, то и другой сходится, если один расходится, то и другой расходится. Это понятие часто употребляют при сравнении рядов.

 

Пример. Применим интегральный признак к гармоническому ряду.

- интеграл расходится, поэтому и гармонический ряд расходится.

Пример. Рассмотрим «ряды Дирихле» . Название взято в кавычки, так неизвестно, рассматривал ли эти ряды Дирихле, но оно устоялось за долгие годы.

. Ясно, что интеграл сходится при p>1 и расходится при P<1. Случай p=1 рассмотрен выше (расходящийся гармонический ряд). Отсюда следует вывод

.

 

Интересно, что ряд , интегралы расходятся (проверьте по интегральному признаку).

Теперь становится яснее, где пролегает граница между сходящимися и расходящимися рядами. Заодно накоплена библиотека сходящихся и расходящихся рядов, которые можно использовать как эталонные при сравнении рядов. Сравнивать ряды можно с помощью признаков сравнения.

 

Признаки сравнения рядов.

Второй признак сравнения.

Пусть . Тогда ряды и сходятся или расходятся «одновременно», т.е. один из них сходится, то и другой сходится, если один расходится, то и другой расходится.

Доказательство. Раскроем определение предела. .

.

Если ряд сходится, то по 1 признаку сравнения ряд сходится (, ряд сходится (свойство сходящихся рядов).

Если ряд сходится, то ряд сходится (свойство сходящихся рядов), тогда по 1 признаку сравнения ряд сходится.



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 393; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.131.13.37 (0.171 с.)