Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Значение процесса торможения в ЦНССодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Явление торможения в нервных центрах (или центрального торможения) было впервые открыто И. М. Сеченовым в 1862 г., обнаружившим возникновение торможения спинальных центров лягушки при раздражении структур головного мозга. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга» (1863). Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивание лапки). Отсюда он сделал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности, вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный опыт вошел в историю физиологии под названием сеченовское торможение. Реципрокный (антагонистический) характер возбуждающих и тормозных влияний в ЦНС показан учеником И. М. Сеченова Н. Е. Введен-ким и подробно проанализирован английским нейрофизиологом Ч. Шеррингтоном. Важным шагом к выяснению природы центрального торможения оказалось выявление самостоятельного значения торможения для работы нервных центров. Торможение нельзя свести ни к утомлению нервных центров, ни к их перевозбуждению. Торможение – самостоятельный нервный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения. Тормозные процессы – необходимый компонент в координации нервной деятельности. Во-первых, процесс торможения ограничивает распространение возбуждения на соседние нервные центры, чем способствует его концентрации в необходимых участках нервной системы. Во-вторых, возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов. В-третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т.е. играет охранительную роль. 2. Постсинаптическое и пресинаптическое торможение Процесс торможения, в отличие от возбуждения, не может распространяться по нервному волокну - это всегда местный процесс в области синаптических контактов. По месту возникновения различают пресинаптическое и постсинаптическое торможение. Особенно широкое распространение в ЦНС имеет постсинаптическое торможение. Постсинаптическое торможение – это тормозные эффекты, возникающие в постсинаптической мембране. Чаше всего этот вид торможения связан с наличием в ЦНС специальных тормозных нейронов. Они представляют собой особый тип вставочных нейронов, у которых окончания аксонов выделяют тормозной медиатор, в качестве которых могут быть гамма-аминомасляная кислота (ГАМ К), глицин и др. Нервные импульсы, подходя к тормозным нейронам, вызывают в них такой же процесс возбуждения, как и в других нервных клетках. В ответ по аксону тормозной клетки распространяется обычный потенциал действия. Однако, в отличие от других нейронов, окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. В результате тор- мозные клетки тормозят те нейроны, на которых оканчиваются их аксоны. К специальным тормозным нейронам относятся клетки Рэншоу в спинном мозге, клетки Пуркинье мозжечка, корзинчатые клетки в промежуточном мозге и др. Большое значение, например, тормозные клетки имеют при регуляции деятельности мышц-антагонистов: приводя к расслаблению мышц-антагонистов, они облегчают тем самым одновременное сокращение мышцагонистов (рис. 7). Рис. 7. Участие тормозной клетки в регуляции мышц - антагонистов: В и Т – возбуждающий и тормозной нейроны; (+) – возбуждение мотонейрона мышцы-сгибателя (МС), (-) – торможение мотонейрона мышцы-разгибателя (МР); Р – кожный рецептор Клетки Рэншоу участвуют в регуляции уровня активности отдельных мотонейронов спинного мозга. При возбуждении мотонейрона импульсы поступают по его аксону к мышечным волокнам и одновременно по коллатералям аксона – к тормозной клетке Рэншоу. Аксоны последней «возвращаются» к этому же нейрону, вызывая его торможение. Чем больше возбуждающих импульсов посылает мотонейрон на периферию (а значит, и к тормозной клетке), тем сильнее это возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система действует как механизм саморегуляции нейрона, предохраняя его от чрезмерной активности. Клетки Пуркинье мозжечка своими тормозными влияниями на клетки подкорковых ядер и стволовых структур участвуют в регуляции тонуса мышц. Корзинчатые клетки в промежуточном мозге являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий от различных областей тела. Пресинаптическое торможение возникает еще в пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким бы то ни было изменениям. Пресинаптическое торможение наиболее часто выявляется в структурах мозгового ствола и особенно спинного мозга. Как и постсинаптическое, осуществляется оно посредством специальных тормозных вставочных нейронов. Структурной основой пресинаптического торможения являются аксо-аксонные синапсы, т.е. окончание аксона тормозного нейрона образует синапс на окончании аксона возбуждающей нервной клетки (рис. 8). Рис. 8. Схема организации синап - ов, участвующих в пресинаптическом торможении: 1 – нервная клетка, 2 – аксон возбуждающего нейрона, 3 – аксон тормозного нейрона Импульсы в пресинаптической части аксона тормозного нейрона высвобождают медиатор, который вызывает чрезмерно сильную деполяризацию мембраны окончаний аксона возбуждающего нейрона (как предполагают, за счет увеличения проницаемости их мембраны для Cl-). Считают, что указанная деполяризация вызывает уменьшение амплитуды ПД, приходящего в возбуждающее окончание, что в свою очередь уменьшает количество высвобождаемого им медиатора, вследствие чего амплитуда ВПСП падает. Таким образом блокируется передача возбуждения. Этот вид торможения ограничивает поток афферентных импульсов к нервным центрам, выключая посторонние для основной деятельности влияния. 3. Явления иррадиации и концентрации. Другие принципы координационной деятельности ЦНС. Принцип доминанты 1. Конвергенция, или принцип общего конечного пути. Схождение различных путей проведения нервных импульсов к одной и той же нервной клетке носит название конвергенции. 2. Дивергенция. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками носит название дивергенции. Благодаря процессу дивергенции одна и та же нервная клетка может участвовать в различных нервных реакциях и контролировать большое число других нейронов, что приводит к иррадиации возбуждения. 3. Явления иррадиации и концентрации. При раздражении одного рецептора возбуждение может в принципе распространяться в ЦНС в любом направлении и на любую нервную клетку. Это происходит благодаря многочисленным взаимосвязям нейронов одной рефлекторной дуги с нейронами других рефлекторных дуг. Распространение процесса возбуждения на другие нервные центры называют явлением иррадиации. Чем сильнее афферентное раздражение и чем выше возбудимость окружающих нейронов, тем больше нейронов охватывает процесс иррадиации. Процессы торможения ограничивают иррадиацию и способствуют концентрации возбуждения в исходном пункте ЦНС. Процесс иррадиации играет важную положительную роль при формировании новых реакций организма (ориентировочных реакций, условных рефлексов). Чем больше активируется различных нервных центров, тем легче отобрать из их числа наиболее нужные для последующей деятельности центры. Благодаря иррадиации возбуждения между различными нервными центрами возникают новые функциональные взаимосвязи - условные рефлексы. На этой основе возможно, например, формирование новых двигательных навыков. Вместе с тем, иррадиация возбуждения может оказать отрицательное воздействие на состояние и поведение организма, нарушая тонкие взаимоотношения между возбужденными и заторможенными нервными центрами и вызывая нарушения координации движений. 4. Принцип доминанты. Исследуя особенности межцентральных отношений, А. А. Ухтомский обнаружил, что если в организме животного осуществляется сложная рефлекторная реакция, например, повторяющиеся акты глотания, то электрическое раздражение моторных центров не только перестает вызывать в этот момент движение конечностей, но и усиливает протекание начавшейся цепной реакции глотания, которая оказалась главенствующей. Такой господствующий очаг возбуждения в ЦНС, определяющий текущую деятельность организма, А. А. Ухтомский (1923) обозначил термином доминанта. Речь идет о том, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, реализация которых представляет наибольший интерес для организма, т.е. они в данный момент времени самые важные. Поэтому эти рефлексы реализуются, а другие - менее важные - тормозятся. Центры, участвующие в реализации доминантных рефлексов, Ухтомский назвал доминантным очагом возбуждения. Этот «очаг» обладает рядом важных свойств: ■ он стойкий (его сложно затормозить); ■ этот очаг тормозит другие потенциальные доминантные очаги; Отчего же именно данный очаг является доминантным? Доминирующий очаг может возникнуть при повышенном уровне возбудимости нервных клеток, который создается различными гуморальными и нервными влияниями. Т.е. это определяется состоянием организма, например, гормональным фоном. У голодного животного и человека доминантными рефлексами являются пищевые. Доминирующий очаг подавляет деятельность других центров, оказывая сопряженное торможение. Объединение большого числа нейронов в одну доминантную систему происходит путем взаимного сонастраивания на общий темп активности, т.е. путем усвоения ритма. Одни нервные клетки снижают свой бо лее высокий темп деятельности, а другие - повышают низкий темп до некоторого среднего, оптимального ритма. Доминанта может надолго сохраняться в скрытом, следовом состоянии (потенциальная доминанта). При возобновлении прежнего состояния или прежней внешней ситуации доминанта может снова возникнуть (актуализация доминанты). Например, в предстартовом состоянии активизируются все те нервные центры, которые входили в рабочую систему во время предыдущих тренировок, и, соответственно, усиливаются функции, связанные с работой. Мысленное выполнение физических упражнений или представление движений также воспроизводит рабочую доминанту, что обеспечивает тренирующий эффект представления движений и является основой так называемой идеомотор-ной тренировки. При полном расслаблении (например, при аутогенной тренировке) спортсмены добиваются устранения рабочих доминант, что ускоряет процессы восстановления. Как фактор поведения доминанта связана с высшей нервной деятельностью и психологией человека. Доминанта является физиологической основой акта внимания. При наличии доминанты многие влияния внешней среды остаются вне нашего внимания, но зато более интенсивно улавливаются и анализируются те, которые нас особенно интересуют. Таким образом, доминанта является мощным фактором отбора биологически и социально наиболее значимых раздражений. 4. Принцип обратной связи. Осуществляется эта связь за счет потока импульсов с рецепторов. 5. Принцип субординации, или соподчинения.
Материалы для самостоятельной подготовки Вопросы к коллоквиуму и для самоконтроля 1. На какие отделы подразделяют нервную систему? 2. К ЦНС относят.... 3. Назовите основные функции ЦНС. 4. Как Вы понимаете выражение «нейрон-структурная и функциональная единица нервной системы»? 5. Каковы основные функции нейронов? 6. В чем заключается:
■ рецепторная; ■ интегративная; ■ эффекторная функция нейронов?
7. Назовите функции глиальных клеток. 8. Охарактеризуйте основные структурные элементы нервной клетки и их функции. 9. Дайте классификацию нейронов по количеству отростков. 10. Какие типы нейронов Вы знаете? 11. Как происходит взаимодействие нейронов между собой и с эффекторными органами? 12. Что такое синапс? Как он устроен? 13. Как называются химические вещества, с помощью которых происходит пе-редача нервных импульсов? 14. Приведите примеры: возбуждающих; тормозных медиаторов. 15. Опишите механизм действия медиатора в возбуждающих; тормозных синапсах. 16. Назовите особенности проведения возбуждения в ЦНС. 17. Что такое рефлекс? 18. Из каких частей состоит рефлекторная дуга? Что такое нервные центры? 19. На чем основаны процессы координации деятельности ЦНС? 20. Кем и когда было открыто явление торможения в ЦНС? 21. В чем состоит значение процесса торможения в ЦНС? 22. Чем отличается процесс торможения от процесса возбуждения? 23. Какие виды торможения Вы знаете? 24. Назовите специальные тормозные нейроны. 25. Укажите особенности постсинаптического и пресинаптического тормо-жения. 26. Перечислите принципы координационной деятельности ЦНС. 27. Кем и когда был открыт принцип доминанты? 28. Какими свойствами обладает доминантный очаг возбуждения? 29. Дайте определение доминанты. 30. Распространение процесса возбуждения на другие нервные центры называ-ют явлением.... 31. Схождение различных путей проведения нервных импульсов к одной и той же нервной клетке носит название.... 32. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками называется..... Тесты 1. Функцией нервной системы является: а. регуляция работы органов и систем органов; б. осуществление связи организма с внешней средой; в. согласование деятельности разных органов и систем органов; г. а + б + в. 2. Укажите неверный ответ. а. нервными узлами; б. нервными сплетениями; в. нервными волокнами (аксонами) и их окончаниями; г. нервными центрами. 3. Нейрон состоит: а. из тела; б. из дендритов; в. из длинного отростка – аксона; г. из аксонных окончаний; д. а + б + в + г. 4. Функция восприятия нервного импульса осуществляется: а. телом; б. аксоном; в. дендритами. 5. Передача нервного импульса с нейрона осуществляется: а. в синапсе; б. в теле; в. в дендрите. 6. Серое вещество мозга образовано скоплением: а. отростков нейронов; б. тел нейронов; в. концевых частей аксонов. 7. Центростремительными называются нейроны, которые проводят нервный а. от рецептора в ЦНС; б. из ЦНС к рабочему органу; в. от одной нервной клетки к другой. 8. Отметьте неверный ответ. а. полностью расположены в ЦНС; б. передают нервный импульс с одного нейрона на другой; в. передают нервный импульс на рабочий орган. 9. Центробежными называются нейроны, проводящие нервный импульс: а. из ЦНС к рабочему органу; б. от рецептора в ЦНС; в. от одного нейрона на другой в пределах ЦНС. 10. Наибольшая скорость проведения нервного импульса характерна для воло- а. соматической нервной системы; б. вегетативной нервной системы; в. одинакова для а и б.
Модуль 2 ЧАСТНАЯ ФИЗИОЛОГИЯ ЦНС Лекция 7 ФУНКЦИИ СПИННОГО МОЗГА И ПОДКОРКОВЫХ ОТДЕЛОВ ГОЛОВНОГО МОЗГА 1. Спинной мозг. Нейронная организация. Функции спинного мозга В ЦНС различают более древние сегментарные отделы (спинной, продолговатый и средний мозг, регулирующие функции отдельных частей тела, лежащих на том же уровне) и эволюционно более молодые надсегментарные (промежуточный мозг, мозжечок и кора больших полушарий) отделы нервной системы (рис. 9).
Гипоталамус Полосатое тело Рис. 9. Основные отделы центральной нервной системы ( схема ) Надсегментарные отделы не имеют непосредственных связей с органами тела, а управляют их деятельностью через нижележащие сегментарные отделы. Спинной мозг является низшим и наиболее древним отделом ЦНС. Спинной мозг характеризуется выраженным сегментарным строением, отражающим сегментарное строение тела позвоночных. От каждого спинномозгового сегмента отходят две пары передних (вентральных) и задних (дорсальных) корешков (рис. 10).
Рис. 10. Передние (1) и задние (2) корешки спинного мозга ( схема ), 3 – спинномозговой узел Дорсальные корешки формируют афферентные входы, вентральные – эфферентные выходы спинного мозга. В них проходят аксоны альфа- и гаммамотонейронов, а также преганглионарных нейронов вегетативной нервной системы (ВНС). После перерезки передних корешков на одной стороне наблюдается полное выключение двигательных реакций, но чувствительность этой стороны тела сохраняется; перерезка задних корешков выключает чувствительность, но не приводит к утрате двигательных реакций мускулатуры. При травме спинного мозга, когда нарушается связь между спинным и головным мозгом, наступает спинальный шок. На поперечном срезе спинного мозга ясно выделяется центрально расположенное серое вещество, образованное скоплением тел нервных клеток, и окаймляющее его белое вещество, образованное нервными волокнами. В сером веществе различают передние и задние рога, между которыми лежит промежуточная зона. Кроме того, в грудных сегментах различают боковые рога. В составе серого вещества спинного мозга человека насчитывают около 13,5 млн нервных клеток. Нейронная организация спинного мозга. Все нейронные элементы спинного мозга могут быть подразделены на 4 основные группы: ■ эфферентные нейроны; ■ вставочные нейроны, составляющие основную массу (97 %) всех нейронов и обеспечивающие сложные процессы координации внутри спинного мозга; ■ нейроны восходящих трактов; ■ интраспинальные волокна чувствительных афферентных нейронов. Эфферентные нейроны. Среди мотонейронов спинного мозга выделяют крупные клетки с длинными дендритами - альфа-мотонейроны и мелкие - гамма-мотонейроны. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращения скелетных мышечных волокон. Тонкие волокна гамма-мотонейронов не вызывают сокращения мышц. Они подходят к проприорецепторам - мышечным веретенам и регулируют их чувствительность. Благодаря сочетанной активации альфа- и гамма-мотонейронов рецепторы растяжения могут активироваться не только во время растяжения мышц, но и при их сокращении, что важно для обеспечения моторной координации. Особую группу эфферентных нейронов представляют преганглионарные нейроны ВНС, расположенные как в боковых, так и в передних рогах спинного мозга. Вставочные нейроны спинного мозга представляют довольно разнородную группу нервных клеток, тела, дендриты и аксоны которых находятся в пределах спинного мозга. Нейроны восходящих трактов также целиком находятся в пределах ЦНС. Тела этих клеток расположены в сером веществе спинного мозга, в то время как их аксоны проецируются к нейронам различных вышележащих образований. Основными функциями спинного мозга являются рефлекторная и проводниковая. Рефлекторная функция спинного мозга. В спинном мозге замыкается большое количество рефлекторных дуг, с помощью которых регулируются различные функции организма. Рефлексы спинного мозга можно подразделить на двигательные, осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов. Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет элементарные двигательные рефлексы - сгибательные и разгибательные, ритмические, шагательные, возникающие при раздражении кожи или про приорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая мышечный тонус. К числу наиболее простых относятся сухожильные рефлексы. Они легко вызываются с помощью короткого удара по сухожилию и имеют важное диагностическое значение в неврологической практике, т.к. позволяют оценивать функциональное состояние альфа-мотонейронов по изменению ответных потенциалов мышц при периферических раздражениях. Особенно выражены сухожильные рефлексы в мышцах разгибателей ноги (коленный рефлекс, Н-рефлекс или рефлекс Гофмана) – ответная реакция икроножной мышцы при раздражении большеберцового нерва; и голени (ахиллов рефлекс, Т-рефлекс (тендон – сухожилие) – ответная реакция камбаловидной мышцы при раздражении ахиллова сухожилия. Рефлекторная реакция проявляется в виде резкого сокращения мышцы. Специальные мотонейроны иннервируют дыхательную мускулатуру (межреберные мышцы и диафрагму) и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему). Так, центры дефекации и мочеиспускания лежат в нижнем отделе спинного мозга. Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга на периферию. Таким образом, основная функция спинного мозга у человека – проведение возбуждения от органов к головному мозгу и от него к органам. 2. Функции заднего мозга Головной мозг устроен значительно сложнее, чем спинной. Продолговатый мозг и варолиев мост (в целом – задний мозг) являются частью ствола мозга. В заднем мозге сосредоточено управление жизненно важными процессами. Здесь находятся: 1. большая группа черепномозговых нервов (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень); 2. центры многих пищеварительных рефлексов – жевания, глотания, движений желудка и части кишечника, выделения пищеварительных соков; 3. центры некоторых защитных рефлексов (чихания, кашля, мигания, слезоотделения, рвоты); 4. центры водно - солевого и сахарного обмена; 5. на дне IV желудочка в продолговатом мозге находится жизненно важный дыхательный центр, состоящий из центров вдоха и выдоха. Его составляют мелкие клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга. Удар в продолговатый мозг вызывает сильное нервное возбуждение и паралич животного; 6. в непосредственной близости от дыхательного центра расположен сердечно - сосудистый центр. Его крупные клетки регулируют деятельность сердца и просвет сосудов. Переплетение клеток дыхательного и сердечно-сосудистого центров обеспечивает их тесное взаимодействие; 7. продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц, повышая тонус мышц-разгибателей. Он принимает участие, в частности, в осуществлении установочных рефлексов позы (шейных, лабиринтных). Это все центры безусловных рефлексов. Через продолговатый мозг проходят восходящие пути слуховой, вестибулярной, проприоцептивной и тактильной чувствительности. На уровне продолговатого мозга перекрещиваются нервные пути. Функции центров продолговатого мозга находятся под контролем высших отделов головного мозга. 3. Функции среднего мозга В состав среднего мозга входят скопления нервных клеток, получивших названия четверохолмия, черная субстанция и красные ядра. В передних буграх четверохолмия находятся зрительные подкорковые центры, а в задних – слуховые. Средний мозг участвует в регуляции движений глаз, осуществляет зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету). Четверохолмие выполняет ряд реакций, являющихся компонентами ориентировочного рефлекса. Если Вы вдруг ослеплены неожиданно ярким светом, Вы плотно закрываете глаза. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных – настораживание ушей. Этот рефлекс (по И. П. Павлову, рефлекс « Что такое ?») необходим для подготовки организма к своевременной реакции на любое новое воздействие. Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук) и в организации содружественных двигательных реакций. Красное ядро среднего мозга выполняет моторные функции – регулирует тонус скелетных мышц, вызывая усиление тонуса мышц-сгибателей. Оказывая значительное влияние на тонус скелетных мышц, средний мозг принимает участие в ряде установочных рефлексов поддержания позы (выпрямительных – установке тела теменем вверх и др.), прямолинейного движения, вращения тела, приземления, подъема и спуска. Все они возникают при участии органов равновесия и обеспечивают сложную координацию движений в пространстве.
Лекция 8 ФУНКЦИИ СПИННОГО МОЗГА И ПОДКОРКОВЫХ ОТДЕЛОВ ГОЛОВНОГО МОЗГА ( окончание)
|
|||||||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 2990; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.118.36 (0.011 с.) |