Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
В 11. Оценка тесноты связи признаков и ранжир факторов по силе их влияния на результат в множественном корреляционно-регрессионном анализе.Содержание книги
Поиск на нашем сайте
Оценка тесноты связи Y со всеми Xi производится с помощью совокупного коэффициента (или индекса) детерминации: , (6.44) где факторная дисперсия общая дисперсия остаточная дисперсия и совокупного коэффициента корреляции:
(6.45)
Совокупный коэффициент детерминации R2 может быть выражен в процентах. Он показывает, какая часть вариации результативного показателя объясняется вариацией факторов, включенных в модель. Совокупный коэффициент корреляции всегда 0<R<1. Он отражает только тесноту связи и не может отражать направление связи (как парный коэффициент корреляции). Чем ближе значение R к 1, тем влияние факторов на результат сильнее, чем ближе к 0 – тем влияние слабее. Расчет совокупного коэффициента детерминации можно произвести, используя связь его с парными коэффициентами корреляции rij и коэффициентами регрессии в стандартизированном виде, т.е. β –коэффициенты (см. вопрос 14)
(6.46)
Если рассматривается зависимость результата от двух факторов, то расчет совокупных коэффициентов корреляции и детерминации можно упростить, используя значения парных коэффициентов корреляции и детерминации.
(6.47)
При множественной корреляционно-регрессионной связи необходимо выделить тесноту связи результативного показателя индивидуально с каждым фактором, для чего вычисляют коэффициенты раздельной корреляции и детерминации. Коэффициентом раздельной детерминации называется произведение парного коэффициента корреляции фактора Хi на его β –коэффициент
(6.48)
Последняя формула отражает тоже равенство, что и формула (6.46). Корень квадратный из коэффициента раздельной детерминации даст коэффициент раздельной корреляции.
(6.49)
При построении уравнения регрессии важным моментом является последовательность включения факторов в уравнение регрессии. И здесь большую роль играет системная связь между каждой парой факторов, включенных в модель, и их группами. Поэтому важным представляется выделение дополнительной доли вариации результативного показателя (У) после включения в модель дополнительно фактора Хк. Такая вариация объясняется частными коэффициентами корреляции и детерминации. В общем виде частный индекс или коэффициент детерминации находят по формуле: (6.50)
Как правило, частные коэффициенты корреляции и детерминации меньше парных коэффициентов корреляции и детерминации. В случает анализа модели У по двум факторам Х1 и Х2 для расчета частных коэффициентов корреляции можно использовать следующие формулы:
(6.51)
(6.52)
В формуле 6.51 отражена связь между У и Х1 при условии неизменности Х2, в формуле 6.52 – связь между У и Х2 при условии постоянства Х1. Частные коэффициенты детерминации найдем, возведя в квадрат частные коэффициенты корреляции. Их сумма близка к значению совокупного коэффициента детерминации. Однако не следует упрощать смысл анализируемых показателей связи, т.к. вопросы анализа силы влияния факторов на результативный показатель можно рассматриваться в зависимости от последовательности включения факторов в модель от их «системного» влияния и т.д. Многие проблемные вопросы оценки силы влияния факторов на результативный показатель рассматриваются в современных учебниках статистики российских авторов. Следующая группа показателей, отражающих связи факторов, включенных в модель, – это коэффициенты эластичности и – коэффициенты. Коэффициенты эластичности вычисляются на базе первых частных производных от функции связи. Коэффициент эластичности показывает, на сколько процентов в среднем изменится результат (У) при изменении фактора Хi в среднем на 1 % при условии неизменности остальных факторов, входящих в модель. (6.53)
(6.54)
– коэффициент показывает, на сколько среднеквадратических отклонений изменяется результат (У) при изменении фактора Хi на одно свое среднеквадратическое отклонение, при неизменности остальных факторов входящих в уравнение.
Примечание: Для парной линейной регрессии выполняется равенство . Поэтому в парном корреляционно-регрессионном анализе – коэффициент не рассматривался.
В 12. Оценка достоверности результатов произведенного корреляционно-регрессионного анализа. Одним из требований при построении многофакторных моделей является требование к объему анализируемой совокупности, т.е. выборка должна быть репрезентативной (представительной). Однако это требование не всегда выполняется. Поэтому рассмотрим вопросы оценки достоверности полученных параметров уравнения и тесноты связи как для достаточно большой совокупности, так и для малой выборки. а) Для репрезентативной выборки: Оценка происходит по той же схеме, что и при парной линейной зависимости, для чего могут быть использованы критерий Стьюдента и критерий Фишера. Расчет параметров t-критерия и F-критерия. Для каждого частного коэффициента регрессии рассчитывается значение t-критерия по формуле: (6.55)
где в знаменателе стоит дисперсия частного коэффициента регрессии
(6.56) где: Ri — величина множественного коэффициента корреляции по фактору Xi c остальными факторами. Однако проще использовать F-критерий, т.к. с его помощью можно оценить достоверность всех полученных показателей (параметров и числовых характеристик). (6.57)
где: n — число факторов в модели, N – объем совокупности. Табличное значение F-критерия найдем по таблицам Фишера, определив столбец по значению числа степеней свободы ν1=n+1, строку – по ν2=N-n-1. Если Fрасч.>=Fтабл., то нуль-гипотеза отвергается и подтверждается достоверность произведенного корреляционно-регрессионного анализа. Если при построении модели используется только два фактора (Х1 и Х2), то можно использовать упрощенную формулу Fрасч.= (6.58)
Табличное значение F-критерия находим по значениям ν1=2, ν2=N-3. ν1 – определяет графу, ν2 – строку таблицы. б) Для малой выборки: При небольшом числе наблюдений (а это часто бывает при исследовании небольшой совокупности, например, только по хозяйствам одного-двух районов), величина множественного коэффициента корреляции и детерминации завышается. Поэтому чтобы оценить реальную тесноту связи и ее достоверность, необходимо произвести следующие расчеты. Сначала проверим выполнение соотношения >= 20 Если это соотношение выполняется, то все дальнейшие расчеты выполняем по пункту а), если не выполняется, то необходимо скорректировать значение множественного коэффициента корреляции и оценить его достоверность. Рассчитаем скорректированный совокупный коэффициент корреляции
(6.59) Произведем оценку достоверности скорректированного множественного коэффициента корреляции, используя формулы (6.57) или (6.58) и соответствующий алгоритм использования критерия Фишера.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 135; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.161.43 (0.007 с.) |