Эритроцит: биохимические функции, особенности метаболических процессов, регуляция процессов транспорта кислорода. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эритроцит: биохимические функции, особенности метаболических процессов, регуляция процессов транспорта кислорода.



Эритроциты (erythrosytus) это форменные элементы крови, они образуются в костном мозге, циркулируют в крови около 120 дней, а потом разрушаются макрофагами в печени, селезёнке и костном мозге. В сутки обновляется 1% эритроцитов, т.е. в течение одной секунды в кровоток поступает около 2 млн. эритроцитов.

Организм взрослого человека содержит около 25*1012 эритроцитов. Концентрация эритроцитов у мужчины составляет 3,9*1012 - 5,5*1012 /л, у женщины - 3,7*1012 - 4,9*1012/л. Более высокое содержание эритроцитов у мужчин обусловлено стимулирующим эритропоэз влиянием андрогенов. Женские половые гормоны, наоборот тормозят эритропоэз.

ФункциИ эритроцитов

Основными функциями эритроцитов, которые реализуются с участием гемоглобина, являются транспорт от легких к тканям О2 и обратно СО2, а также регуляция КОС.

Кроме того эритроциты адсорбируют и транспортируют на своей клеточной мембране аминокислоты, антитела, токсины, лекарственных веществ и другие вещества.

Строение эритроцитов

Эритроциты у человека и млекопитающих в токе крови обычно (80%) имеют форму двояковогнутых дисков и называются дискоцитами. Такая форма эритроцитов создаёт наибольшую площадь поверхности по отношению к объёму, что обеспечивает максимальный газообмен, а также обеспечива­ет большую пластичность при прохождении эритроцитами мелких капилляров.

Диаметр эритроцитов у человека колеблется от 7,1 до 7,9 мкм, толщина эритроцитов в краевой зоне - 1,9 - 2,5 мкм, в центре - 1 мкм. В нормальной крови указанные размеры имеют 75% всех эритроцитов - нормоциты; большие размеры (свыше 8,0 мкм) - 12,5 % - макроциты. У остальных эритроцитов диаметр может быть 6 мкм и меньше - микроциты.

Поверхность отдельного эритроцита у человека приблизительно равна 125 мкм2, а объём (MCV) – 75-96 мкм3.

Эритроциты человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл, они имеют только цитоплазму и плазмолемму (клеточную мембрану), толщиной около 20 нм.

Химический состав эритроцитов

Плазмолемма эритроцитов

Плазмолемма эритроцитов состоит из примерно равного количества липидов и белков, а также небольшого количества углеводов.

Липиды

Бислой плазмолеммы образован глицерофосфолипидами, сфингофосфолипидами, гликолипидами и холестерином. Внешний слой содержит много холина (фосфатидилхолин, сфингомиелин) и около 5% (от общего количества липидов) гликолипидов, внутренний - много фосфатидилсерина и фосфатидилэтаноламина.

Белки

В плазмолемме эритроцита идентифицировано 15 главных белков с молекулярной массой 15-250 кДа. Большинство этих белков (спектрин, гликофорин, белок полосы 3, белок полосы 4.1, актин, анкирин) образуют с цитоплазматической стороны плазмалеммы цитоскелет, который придает эритроциту двояковогнутую форму и высокую механическую прочность.

 

 

Самыми распространенными белками плазмолеммы (более 60% всех мембранных белков) являютсяспектрин, гликофорин и белок полосы 3.

Спектрин - основной белок цитоскелета эритроцитов (составляет 25% массы всех мембранных и примембранных белков), имеет вид фибриллы 100 нм, состоящей из двух антипаралельно перекрученных друг с другом цепей α-спектрина (240 кДа) и β-спектрина (220 кДа). Молекулы спектрина образуют сеть, которая фиксируется на цитоплазматической стороне плазмалеммы с помощью анкирина и белка полосы 3 или актина, белка полосы 4.1 и гликофорина.

Белок полосы 3 - трансмембранный гликопротеид (100 кДа), его полипептидная цепь которого много раз пересекает бислой липидов. Белок полосы 3 является компонентом цитоскелета и анионным каналом, который обеспечивает трансмембранный антипорт для ионов НСО3- и Сl-.

Гликофорин - трансмембранный гликопротеин (30 кДа), который пронизывает плазмолемму в виде одиночной спирали. С наружной поверхности эритроцита к нему присоединены 20 цепей олигосахаридов, которые несут отрицательные заряды. Гликофорины формируют цитоскелет и, через олигосахариды, выполняют рецепторные функции.

Na+,K+-АТФ-аза мембранный фермент, обеспечивает поддержание градиента концентраций Na+ и К+ по обе стороны мембраны. При снижении активности Na+K+-АТФ-азы концентрация Na+ в клетке повышается, что приводит к увеличению осмотического давления, увеличению поступления воды в эритроцит и к его гибели в результате гемолиза.

Са2+-АТФ-аза — мембранный фермент, осуществляющий выведение из эритроцитов ионов кальция и поддерживающий градиент концентрации этого иона по обе стороны мембраны.

Углеводы

Олигосахариды (сиаловая кислота и антигенные олигосахариды) гликолипидов и гликопротеидов, расположенные на наружной поверхности плазмолеммы, образуют гликокаликс.

Олигосахариды гликофорина определяют антигенные свойства эритроцитов. Они являются агглютиногенами (А и В) и обеспечивают агглютинацию (склеивание) эритроцитов под влиянием соответствующих белков плазмы крови – a- и b-агглютининов, находящихся в составе фракции g-глобулинов. Агглютиногены появляются на мембране на ранних стадиях развития эритроцита.

На поверхности эритроцитов имеется также агглютиноген - резус-фактор (Rh-фактор). Он присутствует у 86% людей, у 14% отсутствует. Переливание резус-положительной крови резус-отрицательному пациенту вызывает образование резус-антител и гемолиз эритроцитов.

Цитоплазма эритроцитов

В цитоплазме эритроцитах содержится около 60% воды и 40% сухого остатка. 95% сухого остатка составляет гемоглобин, он образует многочисленные гранулы размером 4-5нм. Оставшиеся 5% сухого остатка приходятся на органические (глюкоза, промежуточные продукты ее катаболизма) и неорганические вещества. Из ферментов в цитоплазме эритроцитов присутствуют ферменты гликолиза, ПФШ, антиоксидантной защиты и метгемоглобинредуктазной системы, карбоангидраза.

Особенность обмена веществ И ЭНЕРГИИ в эритроците

Эритроцит высокоспециализированная клетка, хорошо приспособленная для транспорта газов. Для эритроцита не характерны анаболические процессы. Необходимые структурные молекулы и ферменты синтезируются заранее в процессе дифференцировки и созревания эритроцитов.

Особенность белкового обмена в эритроцитах

В зрелом эритроците белки не синтезируются, т.к. у него нет рибосом, ЭПР, аппарата Гольджи и ядра. Однако в цитоплазме синтезируется пептид глутатион.

Биосинтез глутатиона осуществляется в 2 стадии:

1). АТФ + глутаминовая кислота + цистеин ® γ-глутамилцистеин + АДФ + Фн

2). АТФ + γ-глутамилцистеин + глицин ® глутатион + АДФ + Фн

Первая стадия катализируется γ-глутамилцистеинсинтетазой, вторая стадия – глутатионсинтетазой.

Катаболизм белков в эритроците неферментативный. Белки разрушаются и инактивируются в эритроците под действием неблагоприятных факторов: СРО, гликозилирования, взаимодействия с тяжелыми металлами и токсинами.

Особенность обмена нуклеотидов в эритроцитах

В зрелом эритроците:

1. из ФРПФ (из рибозо-5ф) и аденина может синтезироваться АМФ.

2. АМФ с участием АТФ превращается в АДФ.

3. В реакциях субстратного фосфорилирования (гликолиз) АДФ превращается в АТФ.

4. В гликолизе НАД+ восстанавливается в НАДН2, который используется для регенерации гемоглобина из метгемоглобина.

5. В ПФШ НАДФ+ восстанавливается в НАДФН2, который используется для функционирования антиоксидантной системы.

Особенность липидного обмена в эритроцитах

В зрелом эритроците липиды не синтезируются, однако эритроцит может обмениваться липидами с липопротеинами крови. Катаболизм липидов неферментативный, повреждение и разрушение липидов происходит в реакция ПОЛ.

Особенность углеводного обмена в эритроцитах

В зрелых эритроцитах углеводы не синтезируются, а только используются. Основным субстратом для эритроцитов является глюкоза, которая поступает в клетку путём облегчённой диффузии с помощью ГЛЮТ-2. Также эритроцит может использовать фруктозу, маннозу, галактозу, а также инозин, ксилит и сорбит.

А. Анаэрбный гликолиз

Катаболизм углеводов в эритроцитах на 70-90% происходит в анаэробном гликолизе, где с участием фосфоглицераткиназы и пируваткиназы образуется АТФ, а с участием 3-ФГА дегидрогеназы восстанавливается НАДН2. Конечный продукт лактат выходит в плазму крови и направляется преимущественно в печень для глюконеогенеза.

Б. ПФШ

10% углеводов в эритроцитах подвергаются катаболизму в ПФШ. В его окислительной стадии с участием глюкозо-6-фосфат дегидрогеназы и 6-фосфоглюконат дегидрогеназы восстанавливается НАДФН2.



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 437; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.12.242 (0.012 с.)