Защита клеток от действия протеаз 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Защита клеток от действия протеаз



Клетки поджелудочной железы защищены от действия пищеварительных ферментов тем, что:

· эти ферменты образуются в клетках поджелудочной железы в неактивной формеи активируются только после секре­ции в просвет кишечника.

· в клетках поджелудочной железы присутству­ет белок-ингибитор трипсина, образующий с
активной формой фермента (в случае преж­девременной активации) прочный комплекс.

В полости желудка и кишечника протеазы не контактируют с белками клеток, поскольку сли­зистая оболочка покрыта слоем слизи, а каждая клетка содержит на наружной поверхности плаз­матической мембраны полисахариды, которые не расщепляются протеазами и тем самым за­щищают клетку от их действия.

Разрушение клеточных белков протеазами про­исходит при язвенной болезни желудка или две­надцатиперстной кишки.

ВСАСЫВАНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ

Вса­сывание L-аминокислот (но не D) — активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.

Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:

1. нейтральных, короткой боковой цепью (аланин, серии, треонин);

2. нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);

3. с катионными радикалами (лизин, аргинин);

4. с анионными радикалами (глутаминовая и аспарагиновая кислоты);

5. иминокислот (пролин, оксипролин).

Существуют 2 основных механизма переноса аминокислот: симпорт с натрием и γ-глутамильный цикл.

1. Симпорт аминокислот с Na+.

Симпортом с Nа+ переносятся аминокислоты из первой и пятой группы, а также метионин.

L-аминокислота поступает в энтероцит путём симпорта с ионом Na+. Далее специфическая транслоказа переносит ами­нокислоту через мембрану в кровь. Обмен ионов натрия меж­ду клетками осуществляется путём первично-активного транс­порта с помощью Na+, К+-АТФ-азы.

2. γ-Глутамильный цикл.

γ-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катион­ными радикалами (лизин) в кишечнике, почках и, по-ви­димому, мозге.

В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные — в цитозоле. Мембранно-связанный фермент γ-глутамилтрансфераза (гликопротеин) катализирует перенос γ-глутамильной группы от глутатиона на транспортируемую аминокислоту и последую­щий перенос комплекса в клетку. Амнокислота отщепляется от у-глутамильного остатка под действием фермента у-глутамилциклотрансферазы.

Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты — цистеин и глицин. В результате этих 3 реакций про­исходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Сле­дующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной мо­лекулы аминокислоты с участием у-глутамильного цикла затрачиваются 3 молекулы АТФ.

 

Поступление аминокислот в организм осуществляется двумя путя­ми: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфа­тический проток. Максимальная концентрация аминокислот в крови достигается через 30—50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Аминокислоты при всасывании конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.

50.Реакции декарбоксилирования аминокислот: образование биогенных аминов, биологическое значение. Синтез, ГАМК, серина, аминоэтанола, холина, гистамина в тучных клетках соединительной ткани, значение биогенных аминов

ДЕКАРБОКСИЛИРОВАНИЕ АМИНОКИСЛОТ И ИХ ПРОИЗВОДНЫХ

Некоторые АК и их производные могут подвергаться декарбоксилированию – отщеплению α-карбоксильной группы. У млекопитающих декарбоксилируются: три, тир, вал, гис, глу, цис, арг, орнитин, SAM, ДОФА, 5-окситриптофан и т.д. Реакцию необратимо катализируют декарбоксилазы, которые содержат в активном центре пиридоксальфосфат. Механизм реакции похож на реакцию переаминирования.

Продуктами реакции являются СО2 и биогенные амины, выполняющие регуляторные функции (гормоны, тканевые гормоны, нейромедиаторы).

Серотонин

Серотонин образуется из три в надпочечниках, ЦНС и тучных клетках.

Серотонин – возбуждающий нейромедиатор средних отделов мозга (проводящих путей) и гормон. Стимулирует сокращение гладкой мускулатуры, вазоконстриктор, регулирует АД, температуру тела, дыхание, антидепрессант.

ГАМК

ГАМК образуется и разрушается в ГАМК-шунте ЦТК в высших отдела мозга. Он имеет очень высокую концентрацию.

ГАМК – тормозной нейромедиатор (повышает проницаемость постсинаптических мембран для К+), повышает дыхательную активность нервной ткани, улучшает кровоснабжение головного мозга.

Гистамин

Гистамин образуется в тучных клетках. Секретируется в кровь при повреждении ткани, развитии иммунных и аллергических реакций.

Гистамин – медиатор воспаления, аллергических реакций, пищеварительный гормон:

1. стимулирует секрецию желудочного сока, слюны;

2. повышает проницаемость капилляров, расширение сосудов, покраснение кожи, вызывает отеки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);

3. сокращает гладкую мускулатуру легких, вызывает удушье;

4. вызывает аллергическую реакцию;

5. нейромедиатор;

6. медиатор боли.

Дофамин

Дофамин образуется (фен → тир → ДОФА → дофамин) в мозге и мозговом веществе надпочечников.

Дофамин – нейромедиатор среднего отдела мозга.

51.Реакции дезаминирования в организме человека (переаминирование, окислительное дезаминирование глутамата), биологическое значение. Ферменты АЛТ, АСТ, органная

Дезаминирование АК — реакция отщепления α-аминогруппы от АК, в результате чего образуется соответствующая α-кетокислота и выделяется молекула аммиака.

Дезаминирование бывает прямым и непрямым.

Прямое дезаминирование АК

Прямое дезаминирование - это дезаминирование, которое происходит в 1 стадию с участием одного фермента. Прямому дезаминированию повергаются глу, гис, сер, тре, цис.

Существует 5 видов прямого дезаминирования АК:

1. окислительное;

2. неокислительное;

3. внутримолекулярное;

4. восстановительное;

5. гидролитическое.

Окислительное дезаминирование -самый активный вид прямого дезаминирования АК.

1. Глутаматдегидрогеназа (глу-ДГ) - олигомер, состоящий из 6 субъединиц (молекулярная масса 312 кД), содержит кофермент НАД+. Глу-ДГ катализирует обратимое дезаминирование глу, очень активна в митохондриях клеток практически всех органов, кроме мышц. Глу-ДГ аллостерически ингибируют АТФ, ГТФ, НАДH2, активирует избыток АДФ. Индуцируется Глу-ДГ стероидными гормонами (кортизолом).

Реакция идёт в 2 этапа. Вначале происходит ферментативное дегидрирование глутамата и образование α-иминоглутарата, затем — неферментативное гидролитическое отщепление иминогруппы в виде аммиака, в результате чего образуется α-кетоглутарат. При избытке аммиака реакция протекает в обратном направлении (как восстановительное аминирование α-кетоглутарата).

Глу + НАД+ + Н2О ↔ α-КГ + НАДН2 + NH3

Оксидаза L-аминокислот

В печени и почках есть оксидаза L-АК, способная дезаминировать некоторые L-аминокислоты:

Оксидаза L-АК имеет кофермент ФМН. Т.к. оптимум рН оксидазы L-АК равен 10,0, активность фермента очень низка и вклад ее в дезаминирование незначителен.

Оксидаза D-аминокислот

Оксидаза D-аминокислот также обнаружена в почках и печени. Это ФАД-зависимый фермент, с оптимумом рН в нейтральной среде. Оксидаза D-аминокислот превращает, спонтанно образующиеся из L-аминокислот, D-аминокислоты в кетокислоты.



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 249; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.13.201 (0.012 с.)