Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Окислительно-восстановительных реакцийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
(метод электронно-ионного баланса) 1. Записать уравнение реакции, определить степень окисления каждого элемента и найти элементы, которые в результате реакции изменяют степень окисления, выделить окислитель и восстановитель. 2. Составить полуреакции окисления и восстановления с учетом правил написания ионных уравнений: слабые электролиты, неэлект-ролиты, труднорастворимые соединения записываются в молеку-лярном виде, а сильные электролиты – в ионном. 3. Уравнять число атомов каждого элемента в левой и правой частях полуреакций. При этом в водных растворах в реакциях могут участвовать молекулы воды, ионы водорода или гидроксида. Уравнивание кислорода происходит по-разному в кислой, нейтральной и щелочной средах. В кислой среде в ту часть уравнения, где недостаток кислорода, следует приписать столько молекул H2O, каков недостаток кислорода, а в противоположную часть полуреакции – соответству-ющее число ионов водорода. В щелочной среде в ту часть уравнения, где кислород в недостатке, следует записать вдвое больше ионов гидроксида, чем не хватает кислорода, а в противоположную часть полуреакции – соответствующее число молекул Н2О. В нейтральной среде прием уравнивания зависит от продуктов реакции. 4. Суммарное число зарядов в обеих частях каждой полуреакции должно быть одинаковым. Это достигается путем добавления к левой части или отнятия от левой части полуреакции необходимого числа электронов. 5. Составить электронный баланс, т.е. соблюдая равенство числа отдаваемых и принимаемых электронов, найти для каждой полуреакции наименьший множитель, который одновременно является определяемым коэффициентом. 6. Сложить уравнения полуреакций с учетом найденных коэффициентов и сократить, если необходимо, в обеих частях результирующего уравнения одинаковые частицы. Коэффициенты перенести в уравнение химической реакции. 7. Определить недостающие коэффициенты в уравнении реакции, последовательно уравнивая число атомов металлов, затем неметаллов и водорода. 8. Проверить правильность расстановки коэффициентов в уравнении реакции по числу атомов кислорода в левой и правой частях уравнения.
Пример 3. Уравнять методом полуреакций окислительно-восстановительную реакцию: FeSO4 + KMnO4 + H2SO4 Fe2(SO4)3 + MnSO4 + K2SO4 + H2O. Решение.
FeSO4 + KMnO4 + H2SO4 Fe2(SO4)3 + MnSO4 + K2SO4 + H2O. Видно, что в ходе реакции степень окисления железа повышается от +2 до +3 (процесс окисления), а марганца, входящего в кислотный остаток, – понижается от +7 до +2 (процесс восстановления). Таким образом: 2Fe2+ - 2ē 2Fe3+ (полуреакция окисления). Для составления уравнения полуреакции восстановления используется схема: MnO4- Mn2+. В правой части не хватает четырех атомов кислорода, следовательно, в правую часть следует прибавить четыре молекулы воды, а в левую часть – восемь ионов Н : MnO4- + 8H+ Mn2+ + 4H2O. Суммарный заряд левой части равен +7, заряд правой части +2. Чтобы заряд левой части был равен заряду правой части, необходимо прибавить к левой части пять электронов: MnO4- + 8H+ + 5ē Mn2+ + 4H2O. Отношение числа электронов, отданных при окислении железа и принятых при восстановлении марганца, составляет 2:5, следова-тельно, складывая уравнения двух полуреакций, необходимо первое умножить на 5, а второе на 2:
В молекулярной форме уравнение имеет следующий вид: 10FeSO4 + 2KMnO4 + 8H2SO4 = 5Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O. Пример 4. Уравнять методом полуреакций следующую окислительно-восстановительную реакцию: NaCrO2 + Br2 + NaOH Na2CrO4 + NaBr + H2O.
NaCrO2 + Br2 + NaOH Na2CrO4 + NaBr + H2O. В ходе реакции степень окисления хрома, находящегося в кислотном остатке, повышается от +3 до +6 (процесс окисления), а брома понижается от 0 до −1 (процесс восстановления). Таким образом: Вr2 + 2ē 2Br- (полуреакция восстановления). Для составления уравнения полуреакции окисления используется схема: CrO2- CrO42-. В левой части не хватает двух атомов кислорода, следовательно, в левую часть следует прибавить четыре иона ОН– (вдвое больше, чем не хватает кислорода), в правую часть – две молекулы воды: CrO2- + 4ОН- CrO42- + 2H2O. Суммарный заряд левой части равен –5, заряд правой части равен –2. Чтобы заряд левой части был равен заряду правой части, необходимо из левой части вычесть три электрона: CrO2- + 4ОН- – 3ē CrO42- + 2H2O. Поскольку отношение чисел электронов, отданных при окислении и принятых при восстановлении, равно 3:2, то, складывая уравнения двух полуреакций, первое следует умножить на 2, а второе – на 3:
В молекулярной форме уравнение имеет следующий вид: 2KCrO2 + 3Br2 + 8KOH = 2K2CrO4 + 6KBr + 4H2O. Оксидиметрия Многие химические процессы в живой природе носят окислительно-восстановительный характер. Для количественного определения окислителей и восстановителей используют методы окислительно-восстановительного титрования или оксидиметрии. Так, в клинических и биологических исследованиях оксиди-метрически определяют содержание ферментов каталазы и пероксидазы, аскорбиновой кислоты, сахара в крови, мочевой кислоты в моче и т. д. В санитарно-гигиенических исследованиях при помощи оксидиметрии определяют содержание активного хлора в питьевой воде, растворенного кислорода и органических примесей в воде природных водоемов и т. д. В зависимости от применяемых титрантов оксидиметрию разделяют на перманганатометрию (титрант – перманганат калия), йодометрию (титранты – йод и тиосульфат натрия), йодатометрию (титрант – йодат калия), нитритометрию (титрант – нитрит натрия), цериметрию (титрант – сульфат церия IV), дихроматометрию (титрант – дихромат калия). Особенно широко в медицине и биологии применяют перманганатометрию и йодометрию. Перманганатометрия Данный метод основан на окислительной активности перманганата калия КМnО4. В ходе прямого перманганатометричес-кого титрования КМnО4, восстанавливаясь, окисляет многие восстановители. Характер восстановления перманганат-иона зависит от среды:
Перманганатометрическое титрование почти всегда проводят в кислой среде. Такой выбор обусловлен двумя причинами: во-первых, в кислой среде окислительная активность перманганата калия максимальна; во-вторых, образующиеся в результате реакции ионы Mn2+ бесцветны и, таким образом, заметно отличаются от ионов MnO4–, окрашенных в фиолетовый цвет. Последнее свойство позволяет использовать перманганат-ион не только в качестве реагента, но и в качестве индикатора. Действительно, первая избыточная (после достижения точки эквивалентности) капля титранта окрашивает титруемый раствор в розовый цвет, что и является сигналом для прекращения титрования. В то же время этим методом можно определять и окислители, добавляя к ним известный избыток раствора восстановителя, например оксалата натрия Na2C2O4 или сульфата железа (II) FeSO4, а затем титруя не вступивший в реакцию остаток (обратное перманганатометрическое титрование). Иодометрия Иодометрия основана на реакциях: 2I- – 2ē I2, I2 + 2ē 2I-. Стандартный окислительно-восстановительный потенциал системы I2/2I- () занимает промежуточное положение между потенциалами сильных окислителей и сильных восстанови-телей. Поэтому метод иодометрии применяется при определении как окислителей, так и восстановителей. 1. Определение восстановителей. При определении сильных восстановителей (сульфидов, сульфитов, тиосульфатов) титрантом является желто-коричневый раствор иода, который в результате реакции I2 + 2ē 2I– восстанавливается до бесцветных анионов иода. В качестве индикатора используется раствор крахмала. Амилаза, входящая в состав крахмала, образует с йодом адсорбционное соединение синего цвета. Признак окончания реакции (точка эквивалентности) – появление синей окраски при добавлении одной капли раствора йода сверх эквивалентного количества. Например: Na2SO3 + I2 + H2O = Na2SO4 + 2HI H2S + I2 = 2HI + S
2. Определение окислителей Иодометрию можно использовать и для определения концентраций окислителей, таких как перманганаты, хроматы, дихроматы, хлор и бром в свободном состоянии и др. В данном случае используется реакция 2I– – 2 I2. Раствор окислителя обрабатывают избытком иодида калия в кислой среде, а затем оттитровывают выделившийся при этом в эквивалентном количестве элементарный иод стандартным раствором Na2S2O3 (прием косвенного титрования). Индикатором является раствор крахмала. Точка эквивалентности фиксируется по исчезновению синей краски. Например: K2Cr2O7 + 6KI + 7H2SO4 = 3I2 + Cr2(SO4)3 + 4K2SO4 + 7H2O I2 + 2Na2S2O3 = Na2S4O6 + 2NaI
|
||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 782; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.84.128 (0.009 с.) |