Задача 3. Формула полной вероятности. Формула Байеса



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Задача 3. Формула полной вероятности. Формула Байеса



 

Условия вариантов задачи

Ниже приведены 40 вариантов задачи 3. Номер варианта задачи, которую студент должен решить, указан в индивидуальном задании.

 

3.1. На трех автоматических станках изготавливаются одинаковые детали. Известно, что 30% продукции производится первым станком, 25% - вторым и 45% - третьим. Вероятность изготовления детали, отвечающей стандарту, на первом станке равна 0,99 , на втором - 0,988 и на третьем - 0,98. Изготовленные в течение дня на трех станках нерассортированные детали находятся на складе. Определить вероятность того, что взятая наугад деталь не соответствует стандарту.

3.2. Вероятности попадания при каждом выстреле для трех стрелков равны соответственно 0,2; 0,4; 0,6. При одновременном выстреле всех трех стрелков оказалось одно попадание. Определить вероятность того, что попал первый стрелок.

3.3. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3 , для второго - 0,5 , для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

3.4. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,075 , а на втором - 0,09. Производительность второго автомата вдвое больше, чем первого. Найти вероятность того, что наугад взятая с конвейера деталь нестандартна.

3.5. На распределительной базе находятся электрические лампочки, изготовленные на двух заводах. Среди них 60% изготовлено на первом заводе и 40% - на втором. Известно, что из каждых 100 лампочек, изготовленных на первом заводе, 90 соответствуют стандарту, а из 100 лампочек, изготовленных на втором заводе, соответствуют стандарту 80. Определить вероятность того, что взятая наугад лампочка с базы будет соответствовать стандарту.

3.6. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6 , для второго - 0,5 , для третьего - 0,4 . В результате произведенных выстрелов в мишени оказалось две пробоины. Найти вероятность того, что в мишень попали второй и третий стрелки.

3.7. Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3 , для второго - 0,5 , для третьего - 0,8. Найти вероятность того, что выстрел произведен вторым стрелком.

3.8. На наблюдательный пункт станции установлены четыре радиолокатора различных конструкций. Вероятность обнаружения цели с помощью первого локатора равна 0,86 , второго - 0,90 , третьего - 0,92 , четвертого - 0,95. Наблюдатель наугад включает один из локаторов. Какова вероятность обнаружения цели?

3.9. Среди шести винтовок пристреленными оказываются только две. Вероятность попадания из пристреленной винтовки равна 0,9, а из непристреленной - 0,2. Выстрелом из одной наугад взятой винтовки цель поражена. Определить вероятность того, что взята пристреленная винтовка.

3.10. Приборы одного наименования изготавливаются на трех заводах. Первый завод поставляет 45% всех изделий, поступающих на производство, второй - 30% и третий - 25%. Вероятность безотказной работы прибора, изготовленного на первом заводе, равна 0,8 , на втором - 0,85 и на третьем - 0,9. Определить вероятность того, что прибор, поступивший на производство, исправен.

3.11. Группа студентов состоит из пяти отличников, десяти хорошо успевающих и семи занимающихся слабо. Отличники на предстоящем экзамене могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. Для сдачи экзамена вызывается наугад один студент. Найти вероятность того, что студент получит хорошую или отличную оценку.

3.12. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором - 10 белых и 10 черных шаров, в третьем - 20 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что шар вынут из первого ящика.

3.13. В первой урне пять белых и 10 черных шаров, во второй - три белых и семь черных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Определить вероятность того, что вынутый шар - белый.

3.14. В тире имеется три ружья, вероятности попадания из которых соответственно равны 0,5; 0,7; 0,9. Определить вероятность попадания при одном выстреле, если ружье выбрано наугад.

3.15. Прибор состоит из трех блоков. Исправность каждого блока необходима для функционирования устройства. Отказы блоков независимы. Вероятности безотказной работы блоков соответственно равны 0,6; 0,7; 0,8. Определить вероятность того, что откажет два блока.

3.16. Условие задачи 3.15. Определить вероятность того, что откажет один блок.

3.17. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказал один блок.

3.18. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказали два блока.

3.19. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказали три блока.

3.20. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали второй и третий блоки.

3.21. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали первый и второй блоки.

3.22. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали первый и третий блоки.

3.23. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал третий блок.

3.24. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал первый блок.

3.25. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал второй блок.

3.26. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором - 10 белых и 10 черных шаров, в третьем - 20 черных шаров. Из выбранного наугад ящика вынули шар. Вычислить вероятность того, что шар белый.

3.27. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором - 10 белых и 10 черных шаров, в третьем - 20 черных шаров. Из каждого ящика вынули шар. Затем из этих трех шаров наугад взяли один шар. Вычислить вероятность того, что шар белый.

3.28. Приборы одного наименования изготавливаются на трех заводах. Первый завод поставляет 45% всех изделий, поступающих на производство, второй - 30% и третий - 25%. Вероятность безотказной работы прибора, изготовленного на первом заводе, равна 0,8 , на втором - 0,85 и на третьем - 0,9. Прибор, поступивший на производство, оказался исправным. Определить вероятность того, что он изготовлен на втором заводе.

3.29. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6 , для второго - 0,5 , для третьего - 0,4. В результате произведенных выстрелов в мишени оказалось две пробоины. Найти вероятность того, что в мишень попал второй стрелок.

3.30. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6 , для второго - 0,5 и для третьего - 0,4. В результате произведенных выстрелов в мишени оказалась одна пробоина. Найти вероятность того, что в мишень попал первый стрелок.

3.31. На наблюдательный пункт станции установлены четыре радиолокатора различных конструкций. Вероятность обнаружения цели с помощью первого локатора равна 0,8 , второго‑ 0,95 , третьего ‑ 0,98 , четвертого ‑ 0,93. Наблюдатель включает два локатора. Найти вероятность обнаружения цели.

3.32. На наблюдательный пункт станции установлены четыре радиолокатора различных конструкций. Вероятность обнаружения цели с помощью первого локатора равна 0,8, второго ‑ 0,95 , третьего ‑ 0,98 , четвертого - 0,93. Наблюдатель включает три локатора. Найти вероятность обнаружения цели.

3.33. На наблюдательный пункт станции установлены четыре радиолокатора различных конструкций. Вероятность обнаружения цели с помощью первого локатора равна 0,7 , второго ‑ 0,8 , третьего ‑ 0,9 , четвертого ‑ 0,93. Наблюдатель включает один локатор. Найти вероятность обнаружения цели .

3.34. Условие задачи 3.11 . Найти вероятность того, что студент получит отличную оценку .

3.35. Условие задачи 3.11 . Найти вероятность того, что студент получит неудовлетворительную оценку.

3.36. Условие задачи 3.11 . Найти вероятность того, что студент получит хорошую оценку.

3.37. В двух коробках содержатся резисторы: в 1-й ‑ 5 резисторов номиналом 1 Ом и мощностью рассеивания 1 Вт , 6 резисторов- 1 Ом , 2 Вт . Во 2-ой : 4 резистора 2 Ом; 2 Вт; 4 резистора 1 Ом , 2 Вт . Найти вероятность того , что наудачу вынутый резистор из произвольной коробки имеем номинал 1 Ом и мощность рассеивания 1 Вт.

3.38. Условие задачи 3.37 . Найти вероятность того, что наудачу вынутый резистор из произвольной коробки имеет номинал 1 Ом , 1 Вт.

3.39. Условие задачи 3.37. Вынутый резистор из произвольной коробки имеет номинал 1 Ом, мощность 2 Вт. Из какой коробки он скорее всего вынут?

3.40. Электрическая схема прибора состоит из 4-х микросхем. Работа каждой микросхемы необходима для работы прибора. Прибор вышел из строя . Надежности каждой микросхемы соответственно равны: 0,9 ; 0,95 ; 0,97 ; 0,99 . Найти вероятность того, что вышли из строя вторая и третья микросхемы.

 

Методические указания

 

Пусть проводится опыт, об условиях которого можно сделать n исключающих друг друга предположений (гипотез) , образующих полную группу . Каждая из гипотез осуществляется случайным образом и представляет собой случайное событие. Вероятности гипотез известны и равны:

.

Рассмотрим некоторое событие А, которое может появиться только вместе с одной из гипотез. Известны условные вероятности события А для каждой из гипотез:

Тогда полная вероятность события A определяется по формуле

. (3.1)

Пусть до проведения некоторого опыта об его условиях n можно сделать n исключающих друг друга предположений (гипотез) , образующих полную группу . Вероятности гипотез p(H1), p(H2), … p(Hn) до опыта (априорные вероятности) известны, причем .

Опыт произведен, и произошло некоторое событие А. Тогда определить апостериорные (послеопытные) вероятности гипотез с учетом того, что произошло именно событие А можно определить по формуле Байеса

(3.2)

Примеры

Пример 3.1. Радиоприемное устройство имеет блок обработки сигналов, который позволяет отделить полезный сигнал от помехи без искажений. Если отношение уровня сигнала к уровню помехи менее 1,2, то вероятность выделить полезный сигнал без искажений равна 0,1, если отношение уровня сигнала к уровню помехи от 1,2 до двух, то вероятность – 0,8, а если превышает 2, то вероятность равна 1. Приемник принял сигнал, причем поступление сигнала с помехой любого уровня равновероятно. Найти вероятность того, что он будет обработан без искажений.

Решение. Определим событие А – приемник обработал сигнал без искажений. Выдвигаем гипотезы: H1 – приемник принял сигнал с отношение уровня сигнала к уровню помехи менее 1,2; H2 – приемник принял сигнал с отношение уровня сигнала к уровню помехи от 1,2 до двух; H3 – приемник принял сигнал с отношение уровня сигнала к уровню помехи более двух. Вероятности гипотез (т.к. по условию они равновероятны): . Определим условные вероятности события А при каждой гипотезе: , , . По формуле полной вероятности (3.1) найдем вероятность события А :

Пример 3.2. Прибор состоит из двух блоков, работа каждого блока необходима для работы прибора. Вероятность безотказной работы в течении времени Т (надежность) первого блока равна р1 , второго – р2. Прибор испытывался в течении времени Т и отказал. Найти вероятность того, что отказал только первый блок, а второй исправен (р1= 0,5; р2 = 0,7).

Решение. Сформулируем событие А – оно состоит в том, что прибор отказал. Это событие может произойти при таких гипотезах: H1 – отказал только первый блок, а второй исправен; H2 – отказал второй блок, а первый исправен; H3 – отказал первый блок, отказал второй блок ; H4 – работает первый блок, работает второй блок. Как видим, гипотезы описывают сложные события. Для упрощения расчета вероятностей этих событий введем такие события: событие В1 – работает первый блок; событие В2 – работает второй блок. Тогда гипотезу H1 через эти события можно описать так: , где ‑ противоположное событие, т.е. что блок не работает. Аналогично распишем и другие гипотезы: , , . Так как события и независимы, то вероятностей гипотез рассчитаем, используя теорему умножения вероятностей для независимых событий (2.5):

,

,

,

.

Необходимо найти условные вероятности события А при каждой гипотезе.

Тогда ‑ это условная вероятность того, что прибор вышел из строя, при условии, что первый блок отказал, а второй исправен. Видим, что событие А всегда произойдет, если блок отказал, т.е. А – достоверное событие. Поэтому . Аналогично , . А вот при четвертой гипотезе событие А никогда не выполнится, здесь А – невозможное событие и вероятность его .

Из условия задачи следует, что необходимо пересмотреть вероятность первой гипотезы, поэтому запишем формулу Байеса для первой гипотезы: Из полученного решения следует, что до появления события А вероятность гипотезы H1 была равна . А с учетом появления события А изменилась значительно, стала равной 0,538.


Задача 4. Формула Бернулли

 

Условия вариантов задачи

Ниже приведены 40 вариантов задачи 4. Номер варианта задачи, которую студент должен решить, указан в индивидуальном задании.

 

4.1. Вероятность изготовления стандартного изделия равна 0,95. Какова вероятность того, что среди десяти изделий не более одного нестандартного?

4.2. Вероятность попадания в мишень при одном выстреле равна 0,6. По мишени производится четыре независимых выстрела. Найти вероятность того, что будет хотя бы одно попадание в мишень.

4.3. Техническая система состоит из пяти узлов. Вероятность отказа в течение времени t для каждого узла равна 0,2. Система выходит из строя, если откажут три и более узлов. Найти вероятность выхода из строя этой системы за время t, если отказы в узлах происходят независимо друг от друга.

4.4. Игральную кость подбрасывают 12 раз. Чему равно наивероятнейшее число выпадений 6?

4.5. Вероятность изготовления изделия отличного качества равна 0,9. Сколько надо должно быть деталей в партии, чтобы наивероятнейшее число изделий отличного качества было равно 10?

4.6. По данным технического контроля в среднем 2% изготавливаемых на заводе автоматических станков нуждается в дополнительной регулировке. Чему равна вероятность того, что из шести изготовленных станков четыре нуждаются в дополнительной регулировке?

4.7. Рабочий обслуживает десять однотипных станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,05. Найти вероятность того, что в течение часа этих требований будет от трех до пяти.

4.8. В мастерской работает десять моторов. Вероятность того, что мотор работает с полной нагрузкой, равна 0,8. Найти вероятность того, что в данный момент времени не менее восьми моторов работает с полной нагрузкой.

4.9. Вероятность появления события А в каждом из 15 независимых опытов равна 0,3. Определить вероятность появления события А по крайней мере два раза.

4.10. Вероятность появления события С в каждом из 10 независимых опытов равна 0,2. Определить вероятность появления события С хотя бы восемь раз.

4.11. Монету подбрасывают восемь раз. Чему равно наивероятнейшее число выпадений герба?

4.12. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,3. Произведено 12 бросков. Найти вероятность того, что будет 10 попаданий.

4.13. Определить вероятность того, что в семье, имеющей пять детей, будет три девочки и два мальчика. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

4.14. Монету подбрасывают восемь раз. Какова вероятность того, что шесть раз она упадет гербом вверх?

4.15. В результате многолетних наблюдений установлено, что вероятность выпадения снега 12 октября в данном городе равна 1/3. Сколько лет должны проводиться метеонаблюдения, чтобы наивероятнейшее число снежных дней 12 октября в данном городе было равно 20.

4.16. Имеется 20 ящиков однородных деталей. Вероятность того, что в одном взятом наудачу ящике детали окажутся стандартными, равна 0,75. Найти наивероятнейшее число ящиков, в которых все детали стандартные.

4.17. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что в мишени будет одно или два попадания.

4.18. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что в мишени будет три попадания.

4.19. Монету подбрасывают восемь раз. Какова вероятность того, что она ни разу не упадет гербом вверх?

4.20. При установившемся технологическом процессе 90% всей произведенной продукции оказывается продукцией высшего сорта. Сколько изделий должно находиться в ящике, чтобы наивероятнейшее число изделий высшего сорта в ящике составило 340 изделий.

4.21. Монету подбрасывают восемь раз. Какова вероятность того, что она четыре раза упадет гербом вверх?

4.22. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,9. Произведено 12 бросков. Найти вероятность того, что будет 11 или 12 попаданий.

4.23. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет хотя бы одно попадание в мишень.

4.24. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет хотя бы пять попаданий в мишень.

4.25. Монету подбрасывают десять раз. Какова вероятность того, что она упадет гербом вверх от трех до пяти раз?

4.26. Монету подбрасывают 100 раз. Какова вероятность того, что она ни разу не упадет гербом вверх?

4.27. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,95. Произведено десять бросков. Найти вероятность того, что будет девять попаданий.

4.27. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,9. Произведено 12 бросков. Найти вероятность того, что будет не менее 11 попаданий.

4.29. Рабочий обслуживает десять однотипных станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,05. Найти вероятность того, что в течение часа будет хотя бы одно требование.

4.30. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится восемь независимых выстрелов. Найти вероятность того, что будет от четырех до шести попаданий в мишень.

4.31. Вероятность изготовления изделия отличного качества равна 0,9. Изготовлено 50 изделий. Чему равны наивероятнейшее число изделий отличного качества и вероятность такого числа изделий отличного качества?

4.32. Вероятность появления события А в каждом из 15 независимых опытов равна 0,3. Определить вероятность появления события А семь или восемь раз.

4.33. В результате многолетних наблюдений установлено, что вероятность выпадения дождя 1 октября в данном городе равна 1/7. Определить наивероятнейшее число дождливых дней 1 октября в данном городе за 40 лет.

4.34. При установившемся технологическом процессе 80% всей произведенной продукции оказывается продукцией высшего сорта. Какое количество изделий должно быть в партии, чтобы наивероятнейшее число изделий высшего сорта в партии составляло 250 изделий.

4.35. Монету подбрасывают восемь раз. Какова вероятность того, что она ни разу не упадет гербом вверх?

4.36. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет шесть попаданий в мишень.

4.37. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,5. Произведено 10 бросков. Найти вероятность того, что будет не менее 8 попаданий.

4.38. Рабочий обслуживает десять однотипных станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,1. Найти вероятность того, что в течение часа поступит два или три требования.

4.39. Имеется 10 ящиков однородных деталей. Вероятность того, что в одном взятом наудачу ящике детали окажутся стандартными, равна 0,9. Найти вероятность, что хотя бы в одном ящике все детали будут стандартными.

4.40. Монету подбрасывают восемь раз. Какова вероятность того, что шесть раз она упадет гербом вверх?

 

Методические указания

 

Пусть производится n независимых опытов. В результате каждого опыта событие A появляется в одном опыте с вероятностью р и не появляется с вероятностью . Вероятность того, что в последовательности из n опытов событие А произойдет ровно k раз, вычисляется по формуле Бернулли:

(4.1)

Рекуррентная формула имеет вид

(4.2)

Вероятность того, что в n опытах схемы Бернулли событие А появится от до раз ( ), равна

. (4.3)

Вероятность того, что при n независимых испытаниях событие А появится не менее m раз, вычисляется так:

(4.4)

Здесь надо выбирать, какой ряд короче, и его использовать для расчета. Например, вероятность того, что в n опытах событие А появится хотя бы один раз, равна

. (4.5)

 

Наивероятнейшее число наступлений события А при n опытах определяется из неравенства:

(4.6)

Примеры

Пример 4.1. По каналу связи передается n = 6 сообщений, каждое из которых независимо от других с вероятностью p = 0,2 оказывается искаженным. Найти вероятности следующих событий:

A = {ровно два сообщения из 6 искажены},

B = {все сообщения будут искажены},

C = {все сообщения будут переданы без искажений},

D = {не менее двух сообщений из 6 искажены}.

Решение. По формуле Бернулли (4.1) рассчитаем вероятности первых трех событий:

,

.

Вероятность события D определим по формуле (4.4), первый ряд требует для вычисления пяти слагаемых, второй только два:

.

Пример 4.2. Монету подбрасывают 10 раз. Чему будет равно наивероятнейшее число выпадений герба?

Решение. Запишем , вероятность появления герба (событие А) симметричной монеты равна . Вероятность противоположного события : . Тогда наивероятнейшее число определим, используя (4.6):

Отсюда следует, что .



Последнее изменение этой страницы: 2016-08-14; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.117.38 (0.017 с.)