Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Модуль 3. Углеводороды нефти и газаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Лекция № 6
Алканы нефти План лекции: 1. Газообразные алканы 2. Жидкие алканы 3. Твердые алканы 4. Физические и химические свойства алканов
Алканы присутствуют во всех нефтях и являются одной из основных составных частей нефти. По фракциям алканы распределяются неравномерно, концентрируясь главным образом в нефтяных газах и бензиново-керосиновых фракциях. В масляных дистиллятах их содержание резко падает. Для некоторых нефтей характерно полное отсутствие алканов в высококипящих фракциях. Алканы бывают газообразные (СН4 – С4Н10), жидкие (С5Н12 – С16Н34) и твердые (С17Н36 и выше). Газообразные алканы. Представление о нефти будет неполным, если мы не упомянем ее ближайших «родственников», и прежде всего, углеводородные газы. Вообще все газы Земли делятся на углеводородные, углекислые и азотистые. Нас интересует углеводородный газ, который может образовывать самостоятельные скопления в земной коре или же встречаться вместе с нефтью. УВ-ый газ (или просто газ) представляет собой смесь нескольких газов. До 95% и более этой смеси составляет метан (СН4), присутствуют этан (С2Н6), пропан (С3Н8), бутан (С4Н10) и т.д. В составе УВ-ых газов могут быть также углекислота, азот, аргон, криптон, гелий, сероводород, аммиак и даже свободный водород. Самая ценная примесь – гелий. Даже 0,1% его содержании достаточно, чтобы организовать промышленную разработку. А в газах некоторых месторождений содержание гелия достигает 2% (например, месторождение Панхэндл-Хьюготон, США). Иногда УВ-ый газ включает значительное количество сероводорода (15%, месторождение Лак, Франция). Разработка таких залежей требует особого оборудования, поскольку обычные металлические трубы быстро разрушаются под действием сероводорода. В то же время можно извлечь из газов серу, которая является ценным химическим сырьем. В зависимости от месторождений УВ-ые газы бывают трех видов: природные (чисто газовые), попутные (газы нефтяных месторождений) и газоконденсатные (конденсат – смесь УВ-ов – пентан и более высоких гомологов метана). Жидкие алканы. Углеводороды С5 – С15 - представляют собой жидкие вещества. Они неравномерно распределены по фракциям нефти. При разгонке нефти алканы, начиная от пентана и кончая деканом, а также все их изомеры попадают в бензиновую фракцию (до 1800С). Проведенные исследования показывают, что жидкие алканы состава С5 – С9 имеют в основном нормальное или слабо разветвленное строение. В настоящее время в бензинах различных нефтей найдены все возможные изомеры С5, С6 и С7, 17 октанов, 24 нонана и некоторые деканы. Исследовать углеводородный состав средних фракций нефти (180-3500С) оказалось значительно труднее. Они отличаются высоким содержанием серосодержащих соединений, смолистых веществ, парафинов. Поэтому фракцию 180-3500С разделили на дробные фракции: 180-200, 200-300 и 300-3500С и исследовали каждую фракцию отдельно. На основании анализа керосиновых фракций 77 отечественных и зарубежных нефтей показано, что в них присутствуют десять изомеров декана. Из УВ-ов С11 и С16 в этих фракциях найдены ундекан, додекан, три- и тетрадекан, пентадекан и гексадекан (цетан). В 60-х годах в нефти были обнаружены УВ-ы изопреноидного строения (алканы разветвленного строения). К ним можно отнести: 2,6-диметилалканы (С5-С13), 3,7-диметилалканы (С11, С12, С14), пристан, фитан, ликопан и др. Их содержание в нефтях колеблется в пределах 3-4% на нефть, а иногда и выше. Содержание жидких алканов в различных нефтях изменяется в широких пределах – от 10 до 70%. Среди казахстанских нефтей наиболее богаты жидкими алканами нефти Жылыойского района (месторождение Кемерколь, Котыртас), а также нефти месторождений междуречья Урала-Волги (Камышитовое Юго-Восточное, Мартыши, Жанаталап Вост.). В нефтях перечисленных месторождений содержание жидких УВ-ов (алканов) составляет 60-70%. Твердые алканы. Начиная с гексадекана С16Н34 алканы являются твердыми веществами, входящими в состав нефтяных парафинов и церезинов. Деление твердых УВ-ов на парафины и церезины было сделано на основании различия кристаллической структуры этих УВ-ов, их физических и химических свойств. Твердые парафины присутствуют во всех нефтях, но чаще в небольших количествах (от десятых долей до 5%). В типично парафинистых нефтях их содержание повышается до 7-12%. Исключительными по высокому содержанию твердых парафинов (15-25%) являются нефти месторождений Жетыбай и Узень (полуостров Мангышлак). Твердые парафины находятся в нефтях в растворенном или взвешенном кристаллическом состоянии. Нефтяные парафины представляют собой смесь преимущественно алканов разной молекулярной массы. При перегонке мазута в масляные фракции попадают парафины, имеющие состав С16-С35. В гудронах концентрируются более высокоплавкие УВ-ы С36-С53. Количество возможных изомеров для этих УВ-ов огромно. Так, уже гексадекан имеет 10359 изомеров. Как показали многочисленные исследования, около половины всех твердых парафинов имеет нормальное строение, а остальные представлены малоразветвленными структурами с небольшим числом боковых цепей (в основном, метильные и этильные группы). Церезины – это твердые органические вещества с циклической структурой, более высокомолекулярные и высокоплавкие, чем парафины. Основным компонентом церезинов являются нафтеновые УВ-ы, содержащие в молекулах боковые цепи как нормального, так и изостроения с преобладанием последних. Церезины выделяют либо из остаточных нефтепродуктов, либо из горючего материала – озокерита. Свойства алканов. Физические свойства. Т. к. алканы насыщены водородом, то они имеют минимальные значения плотности и показателя преломления по сравнению с углеводородами других классов. Нормальные углеводороды имеют наивысшие температуры кипения и наибольшую плотность, а наиболее разветвленные – низшие значения температуры кипения и плотности. Например, твердые алканы имеют высокие температуры плавления, температуры кипения, большой молекулярный вес. Плотность парафинов в твердом состоянии лежит в пределах от 865 до 940, в расплавленном – от 777 до 790 кг/м3. Молекулярные массы парафинов лежат в пределах от 300 до 450, а церезинов – от 500 до 750. Физические свойства церезинов во многом сходны со свойствами нормальных УВ-ов. Показатель преломления для церезинов значительно выше, чем для парафинов. Химические свойства. В химическом отношении алканы характеризуются отно-сительно высокой устойчивостью к воздействию большинства сильнодействующих реагентов. В нефтепереработке наибольший интерес представляют реакции окисления, термического и термокаталитического превращения и галогенирования. Вырабатываемые на НПЗ парафины и церезины бывают жидкие и твердые. Жидкие парафины получают карбамидной или адсорбционной депарафинизацией дизельных фракций. Используют их для получения белково-витаминных концентратов, синтетических жирных кислот и ПАВ. Твердые парафины вырабатывают при депарафинизации дистиллятных масляных фракций. Используются для пропитки бумаги, в производстве спичек, свечей, моющих средств, ПАВ и пластичных смазок. Подразделяют на технические, высокоочищенные и парафины для пищевой промышленности. Церезины получают депарафинизацией остаточных масляных фракций или обработкой природных озокеритов. Применяют их в производстве смазок, вазелинов, мастик, копировальной бумаги, в качестве изоляционных материалов в электротехнике.
Контрольные вопросы: 1. Каково содержание алканов в нефтях и попутных газах? 2. Расскажите об углеводородных газах (природные, попутные и газы газоконденсатных месторождений). 3. Назовите алканы легких и средних фракций нефти. 4. Что вы знаете о парафинах и церезинах? 5. Каковы физические и химические свойства алканов?
Литература:
1. Химия нефти и газа. Под ред. Проскурякова В.А., Драбкина А.Е. -Л., Химия, 1989.
Лекция № 7 Циклоалканы нефти План лекции: 1. Моно- и полициклические циклоалканы. 2. Физические и химические свойства циклоалканов 3. Методы получения циклоалканов
Термин «циклоалканы» (нафтены, цикланы) ввел Марковников в 80-х годах прошлого столетия. Они преобладают по своему содержанию во многих нефтях над остальными классами УВ-ов (их массовое содержание в нефтях колеблется от 25 до 75%). Циклоалканы входят в состав всех нефтей и присутствуют во всех фракциях. Их содержание растет по мере утяжеления фракций. Только в высококипящих масляных фракциях их количество уменьшается за счет увеличения ароматических структур. Циклоалканы подразделяются на моноциклические (с одним циклом) и полициклические (с несколькими циклами). Простейшие цикланы – циклопропан и циклобутан и их гомологи в нефтях не обнаружены. Моноциклические циклоалканы ряда СnН2n широко представлены в нефтях циклопентановыми и циклогексановыми структурами. В бензиновых фракциях различных нефтей обнаружено более 50 индивидуальных представителей этого класса УВ-ов с числом углеродных атомов С5-С10. В значительных количествах в нефтях присутствуют: циклогексан, метилциклогексан, диметильные гомологи циклопентана. В нефтях также присутствуют циклоалканы с числом углеродных атомов в цикле более 6. Обнаружены циклогептан, метилциклогептан и различные бициклические структуры с внутренними углеродными мостиками. В керосиновых и дизельных фракциях наряду с гомологами циклогексана присутствуют бициклические циклоалканы (общая формула СnН2n-2) и полициклические циклоалканы с числом циклов максимально до 6 (общая формула СnН2n-4 (6,8,10).. Во многих нефтях найден декалин, первый представитель ряда бициклических циклоалканов с конденсированными шестичленными кольцами, а также его ближайшие гомологи. Неконденсированные циклоалканы представлены следующими соединениями: гомологами дициклопентила, циклопентилциклогексида, дициклогексида. Количество углеродных атомов в боковых цепях циклоалканов может быть от 3-10 в средних и до 20-28 в высококипящих фракциях нефти. В некоторых нефтях обнаружен твердый полициклический циклоалкан – адамантан. Он имеет кристаллическую решетку алмаза и плотность выше 1 (1,07г/см3). Свойства циклоалканов. Температуры кипения циклоалканов выше температуры кипения алкенов или алканов с тем же числом атомов углерода в молекуле. Плотность соединений этой группы выше плотности соответствующих н-алканов, но ниже плотности аренов. По физическим и химическим свойствам циклоалканы можно условно разделить на следующие группы: с малыми (С2-С4), обычными (С5, С6, С7), средними (С8-С12) и большими циклами (>С12). Многие химические свойства циклоалканов напоминают свойства алканов. Основные реакции циклоалканов: действие азотной кислоты, окисление, пербромирование, замещение, термическое воздействие, каталитическое превращение циклоалканов. Циклоалканы С5 и С6 достаточно устойчивы, однако под влиянием хлорида и бромида алюминия подобно алканам претерпевают изомеризацию. Так, циклогексан превращается при 30-800С в метилциклопентан. Окислением циклогексана кислородом получают смесь циклогексанола и циклогексанона, а окислением этой смеси – адипиновую кислоту. Циклоалканы находят широкое применение в промышленности. Процесс выделения индивидуальных соединений этой группы из нефти сложный и дорогой, поэтому их получают синтетическими методами. Циклогексан получают гидрированием бензола на никелевом катализаторе при 140-2000С и давлении 1-5 МПа. Циклогептан синтезируют из циклопентадиена и ацетилена пиролизом первичного аддукта и последующим гидрированием циклогептадиена. Тетралин и декалин получают гидрированием нафталина с никелевым катализатором соответственно в паровой и жидкой фазах.
Контрольные вопросы: 1. Каково содержание циклоалканов в нефтях? 2. Назовите представителей моно- и полициклических циклоалканов нефти. 3. Каковы физико-химические свойства циклоалканов? 4. Какими методами получают циклоалканы?
Лекция № 8
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 492; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.135.24 (0.009 с.) |