Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вязкость. Оптические свойства.Содержание книги
Поиск на нашем сайте
План лекции: 1. Вязкость. Виды вязкости. 2. Показатель преломления и его производные.
Вязкость Вязкость является важнейшей характеристикой нефтяных масел, котельных и дизельных топлив и ряда других нефтепродуктов. Вязкость является мерой способности жидкости сопротивляться течению. Различают динамическую, кинематическую и условную вязкость. Динамическая вязкость η – это отношение действующего касательного напряжения к градиенту скорости при заданной температуре. Единица измерения динамической вязкости паскаль-секунда – Па.с, на практике используют обычно мПа.с. Величина, обратная динамической вязкости, называется текучестью. В основе определения динамической вязкости путем измерения времени истечения жидкости через капиллярные трубки лежит формула Пуазейля: η = π Р r4 τ / 8VL, где: Р – давление, при котором происходит истечение жидкости из капилляра; V – объем жидкости, протекающей через капилляр; τ - время истечения жидкости в объеме; L – длина капилляра; r – радиус капилляра. Наибольшее распространение при различных расчетах, а также при контроле качества нефтепродуктов получила кинематическая вязкость. Кинематическая вязкость ν – это отношение динамической вязкости жидкости к плотности при той же температуре ν = η / ρ Единица кинематической вязкости м2/с, на практике используют обычно мм2/с. В среднем кинематическая вязкость большинства нефтей не превышает 40-60 мм2/с. Для определения динамической и кинематической вязкости требуется источник постоянного давления (постоянно приложенного напряжения) на жидкость. Это условие предопределяет дополнительные технические трудности, сложность воспроизведения и трудоемкость анализа. Сущность метода определения кинематической вязкости заключается в замене постоянного давления (внешней силы) давлением столба жидкости, равным произведению высоты столба жидкости, плотности жидкости и ускорения силы тяжести. Эта замена привела к значительному упрощению и распространению метода определения кинематической вязкости в стеклянных капиллярных вискозиметрах. Определение кинематической вязкости Сущность метода заключается в измерении времени истечения определенного объема испытуемой жидкости под влиянием силы тяжести ν = С.τ, где: С – постоянная вискозиметра, мм2/с; τ – среднее время истечения нефти (нефтепродукта) в вискозиметре, с Динамическую вязкость η, мПа.с, исследуемой нефти (нефтепродукта) вычисляют по формуле: η = ν . ρ, где ν - кинематическая вязкость, мм2/с; ρ – плотность при той же температуре, при которой определялась вязкость, г/см3.
В существующих ГОСТах не нефтепродукты кинематическая вязкость нормируется в стоксах (1 Ст = 10-4 м2/с). Для высоковязких нефтепродуктов (мазутов) определяют условную вязкость. Определение условной вязкости также основано на истечении жидкости (через трубку с диаметром отверстия 5 мм) под влиянием силы тяжести. Условная вязкость – отношение времени истечения нефтепродукта при заданной температуре ко времени истечения дистиллированной воды при 200С. Единица измерения – условные градусы (0ВУ). Между условной и кинематической вязкостью установлена зависимость ν t =7,31ВУt – 6,31/ ВУt Так как величина вязкости в очень сильной степени зависит от температуры, то необходимо всегда указывать, при какой температуре она определена. С ее понижением вязкость увеличивается. В технических требованиях на нефтепродукты вязкость чаще всего нормируется при 50 и 1000С, реже при 200С для маловязких масел. Зависимость вязкости от температуры выражается формулой Вальтера: lg lg(ν t + а) = А – В lgТ, где: а = 0,8; А и В – константы; Т- температура, К Графически эта зависимость в логарифмических координатах представляет собой прямую. Для оценки вязкостно-температурных свойств смазочных масел в соответствии с ГОСТами применяются следующие показатели: индекс вязкости ИВ, температурный коэффициент вязкости ТКВ; вязкостно-температурный коэффициент ВТК (используется очень редко). Индекс вязкости (ИВ) – это отношение кинематической вязкости нефтепродукта при 50 и 1000С. Практическое значение этого отношения не очень велико, т.к. оно характеризует пологость температурной кривой вязкости только в интервале сравнительно высоких температур, когда вязкость изменяется уже относительно мало. Наиболее пологую вязкостно-температурную кривую имеют н-алканы, а наиболее крутую – арены. Индекс вязкости определяется по таблицам Комитета стандартов и измерительных приборов. В мировой практике для оценки вязкостно-температурных свойств масел широко используется индекс вязкости Дина и Девиса. Индекс вязкости – это сравнительная характеристика, в основе которой лежит сравнение вязкостно-температурной характеристики испытуемого масла с соответствующими характеристиками эталонных масел. Условно принято, что ИВ эталонного масла с пологой кривой вязкости равен 100, а ИВ эталонного масла с крутой температурной кривой равен 0. Для определения ИВ по методике Дина и Девиса необходимо определить вязкость испытуемого масла (в единицах условной вязкости – секундах Сейболта) при 37,80С (1000F) и 98,90С (2100 F) и подобрать для сравнения из двух наборов (серий) эталонных масел (с ИВ=0 - пенсильванская парафинистая нефть и ИВ=100 - смолистая нефть мексиканского побережья) образцы эталонных масел, у которых вязкость при 98,90С равна вязкости испытуемого масла при этой же температуре. Затем по таблицам следует найти, чему равна вязкость этих эталонных масел при 37,80С, и вычислить индекс вязкости Дина и Девиса по формуле: где: L – вязкость при 37,80С эталонного масла с ИВ=0; Н – то же для эталонного масла с ИВ=100; Х – то же для испытуемого масла. В дальнейшем Доксей и сотрудники на основе накопившегося экспериментального материала разработали номограмму, по которой, зная кинематическую вязкость испытуемого масла в сантистоксах при 50 и 1000С, можно легко определить индекс вязкости по системе Дина и Девиса. По этой номограмме составлены таблицы, которыми теперь и пользуются при определении индекса вязкости. Следовательно, для определения индекса вязкости надо экспериментально определить кинематическую вязкость испытуемого масла при 500С и 1000С и воспользоваться таблицей или номограммой. Многие нефти, а также некоторые масла, природные битумы с понижением температуры могут проявлять аномалию вязкости, так называемую структурную вязкость. При этом их течение перестает быть пропорциональным приложенному напряжению, т.е. они становятся неньютоновскими жидкостями. Причиной структурной вязкости является содержание в нефти и нефтепродукте смолисто-асфальтеновых веществ, парафинов и церезинов (образуются кристаллизованные частицы). Для разрушения структуры требуется особое усилие, называемое пределом упругости. После разрушения структуры жидкость приобретает ньютоновские свойства и ее течение становится пропорциональным усилию. Иногда образование пространственной структуры в нефтепродуктах может быть желательным, например, в битумах для придания им большей твердости или в консистентных смазках для уменьшения их текучести при эксплуатационных температурах. Температурный коэффициент вязкости (ТКВ) представляет собой отношение градиента вязкости в пределах температур (от 0 до 1000С или от 20 до 1000С), принятых для оценки вязкостных свойств смазочных масел к абсолютному значению кинематической вязкости при 500С ν50, умноженному на 100. ν0 – ν100 ν0 – ν100 ТКВ0-100 = ______________ . 100 = _____________ ν50 (100-0) ν50 ν20 – ν100 ν20 – ν100 ТКВ20-100 = ______________ . 100 = 1,25 _____________ ν50 (100-20) ν50
Следовательно, для подсчета ТКВ необходимо определить кинематическую вязкость испытуемого масла при трех указанных температурах (0, 50 и 1000С).
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 452; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.235.195 (0.008 с.) |