Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Диспергационные методы получения лиофобных дисперсных систем.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Для того, чтобы получить коллоидный раствор или золь, необходимо выполнить два условия: 1) создать в жидкости твердые или жидкие нерастворимые частицы коллоидной степени дисперсности; 2) обеспечить устойчивость этих частиц, предохранив их от слипания друг с другом (от коагуляции), т. е. стабилизировать систему. Стабилизация коллоидных систем может производиться путем введения в систему нового компонента – стабилизатора, который адсорбируется на поверхности коллоидных частиц и придает частицам заряд и/или образует защитную оболочку. Свободнодисперсные системы (порошки, суспензии, эмульсии, золи) можно получить двумя способами: диспергированием и конденсацией. Диспергирование основано на получении из сплошного и крупного по размерам тела 3 более мелких частиц дисперсной фазы 2. Конденсация, напротив, связана с укрупнением частиц 1, в том числе и частиц молекулярных размеров, до частиц определенного класса дисперсных систем 2. Мы даже не подозреваем, что во многих процессах происходит возникновение и разрушение дисперсных систем. Диспергирование может быть самопроизвольным и несамопроизвольным. Самопроизвольное диспергирование характерно для лиофильных систем. Несамопроизвольное диспергирование характерно для лиофобных систем. Здесь процесс диспергирования осуществляется за счет внешней энергии.
Несамопроизвольное диспергирование бывает: - механическое - физическое (диспергирование ультразвуком, электрическими методами) - физико-химическое (пептизация). Механическое диспергирование в зависимости от агрегатного состояния дисперсной фазы: - измельчение, истирание, раздавливание и т. д.; - распыление; - барботаж. Измельчение проводят в мельницах различной конструкции, например в шаровых (а) или коллоидных (б) мельницах. В шаровых мельницах получают частицы размером 6·104 нм при сухом помоле и менее 103 нм при мокром; в коллоидных – 100 нм и менее. Измельчением получают системы типа т/г, т/ж, распылением – ж/г, ж/ж, барботажем – г/ж. Разрушение материалов в процессе диспергирования может быть облегчено при использовании эффекта Ребиндера – адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно-активных веществ. Диспергирование ультразвуком высокой частоты эффективно лишь в том случае, если диспергируемое вещество обладает малой прочностью. При действии на суспензию ультразвука возникают механические колебания (порядка нескольких тысяч в 1 с), которые разрывают частицы на более мелкие. Таким путем получают органозоли хрупких металлов, гидрозоли серы, графита, гидроксидов металлов, различных полимеров и т. п. При диспергировании в электрических аппаратах избыток электрических зарядов сообщается распыляемой жидкости, и в результате отталкивания одноименных зарядов происходит дробление жидкости на капли. К физико-химическому диспергированию относится метод пептизации. Пептизацией называют переход осадков под действием пептизаторов в состояние коллоидного раствора. Пептизировать можно только “свежие” (свежеприготовленные) осадки, в которых частицы коллоидного размера соединены в более крупные агрегаты через прослойки ДС. По мере хранения осадков происходят явления рекристаллизации и старения, приводящие к сращиванию частиц друг с другом, что препятствует пептизации. Слева - аморфные сферические частицы свежего золя гидроокиси алюминия Справа - кристаллические частицы золя того же вещества по истечении 2-3 месяцев после приготовления золя Различают пептизацию: - адсорбционную; - диссолюционную; - промывание осадка растворителем Получение золя бромида серебра адсорбционной пептизацией. Приготовим осадок бромида серебра AgBr: AgNO3 + KBr → AgBr↓ + KNO3 свежий осадок Возьмем избыток AgNO3 (который играет роль пептизатора) => образуется золь, структурная единица дисперсной фазы которого называется мицеллой. Как происходит образование мицеллы??? Ионы Ag+ (потенциалопределяющие ионы) адсорбируются на поверхности частиц осадка AgBr, заряжая их положительно, к положительно заряженной поверхности образовавшегося ядра мицеллы притягиваются ионы противоположного знака – противоионы (ионы NO3-). Часть этих ионов, составляющая адсорбционный слой, прочно удерживается у поверхности ядра за счет электростатических и адсорбционных сил. Ядро вместе с адсорбционным слоем составляет коллоидную частицу. Остальные противоионы связаны с ядром только электростатическими силами. Эти противоионы образуют диффузный слой. Наличие заряда у коллоидных частиц приводит к их отталкиванию и обеспечивает устойчивость золя. Диссолюционная пептизация отличается от адсорбционной только отсутствием в готовом виде электролита-пептизатора. Рассмотрим на примере получения золя гидроксида железа. FeCl3 + NH4OH → Fe(OH)3↓ + NH4Cl – получили свежий осадок, который помещаем на фильтр и осторожно добавляем HCl: Fe(OH)3 + HCl → FeOCl + 2H2O Образовавшийся FeOCl является электролитом – пептизатором. Далее происходят такие же процессы, как и при адсорбционной пептизации с образованием мицелл: {[mFe(OH)3]·nFeO+·(n-x)Cl-}x+·xCl-. Метод промывания осадка растворителем используется, если осадок получен при значительном избытке одного из реагентов. Большая концентрация ионов в растворе вызывает сжатие двойного электрического слоя. Ионы диффузного слоя проникают в адсорбционный, в результате заряд коллоидной частицы становится равным 0 и происходит агрегация частиц: {[mFe(OH)3]·nFe3+·3nCl-}0. После промывания осадка растворителем мицеллы будут иметь вид: {[mFe(OH)3]·nFe3+·3(n-x)Cl-}3x+·3xCl-.
|
|||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 426; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.10.68 (0.01 с.) |