Основные положения гидродинамики и свойства аэродисперсных систем 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные положения гидродинамики и свойства аэродисперсных систем



ПРЕДИСЛОВИЕ

Большинство технологических процессов в энергетике, производстве строительных материалов, машиностроении, химии и др. сопровождается пылегазовыми выбросами. Попадая в атмосферный воздух, пыль и вредные газы изменяют его состав, уменьшая количество кислорода, необходимого для жизнедеятельности всего живого. Запыленный воздух снижает устойчивость организма человека к инфекционным заболеваниям, уменьшает его работоспособность.

Защита атмосферы от промышленных выбросов – комплексная проблема, предусматривающая разработку организационных и технический мероприятий по внедрению эффективных методов улавливания и обезвреживание выбросов от пыли и вредных химических веществ, максимальное сокращение выбросов и более полное использование газообразных отходов в производстве.

Решать проблемы, связанные с разработкой и применением различных устройств для улавливания пыли и вредных газовых компонентов из газовых потоков, не возможно, не имея, например, основательных представлений об аэродинамике вообще и об аэродинамике запыленных потоков, в частности; зарядки частиц и их поведения под действием электрических полей; процессах коагуляции и взаимодействия пыли с жидкостью; абсорбции, адсорбции и т.д.

Учитывая все сказанное, очевидна необходимость в изложении различных сведений по вопросам физической и химической очистки газов, правильного рассеивания остаточных вредных выбросов в атмосфере.

 

ОСНОВНЫЕ ПОЛОЖЕНИЯ ГИДРОДИНАМИКИ И СВОЙСТВА АЭРОДИСПЕРСНЫХ СИСТЕМ

ОСНОВНЫЕ ПОНЯТИЯ, ПРОИСХОЖДЕНИЕ И КЛАССИФИКАЦИЯ АЭРОДИСПЕРСНЫХ СИСТЕМ

Современные технологические процессы переработки рудного сырья, металлургические в особенности, в большинстве своем высокотемпературные и сопровождаются образованием больших объемов пылегазовых потоков.

Для утилизации тепла и выносимых с потоком дисперсных материалов пылегазовые потоки перед выбро­сом в атмосферу охлаждают и очищают. Часть техноло­гической схемы, которая предназначена для этой цели, состоит из газового тракта, системы теплотехнического и газоочистного оборудования и тягодутьевых устройств, включая дымовую трубу.

Термином газоочистка пользуются как для описания устройств для осуществления очистки пылегазовых пото­ков, так и для описания процессов, протекающих в этих устройствах или аппаратах [1].

Газоочистка – это прежде всего выделение из пылегазового потока содержащихся в нем твердых или жидких частиц. Комбинированная газоочистка включает также и выделение из потока газообразных компонентов, вред­ных для человека и окружающей среды, таких как СО, NOх, SO2, HF и др.

Более общим понятием двух- или многофазного пылегазового потока является аэродисперсная система. Пылегазовый поток - это аэродисперсная система, образующаяся в технологическом процессе. В зависимо­сти от концентрации дисперсной фазы аэродисперсные системы делят на аэрозоли и аэровзвеси. К аэровзвесям относят потоки с высокой концентрацией частиц, имею­щей место в пневмотранспорте пылевидного материала. К аэрозолям принято относить аэродисперсные системы с концентрацией дисперсных частиц, не превышающей нескольких граммов на кубический метр объема газа.

Термин промышленные аэрозоли распространяется на любую газовую среду, не только воздушную.

Свойства аэрозолей отражают свойства газа и взве­шенных в нем частиц. Зачастую тем или иным свойством может обладать вещество, находясь лишь в аэрозольном состоянии.

Многие свойства аэрозолей определяются дисперсно­стью и концентрацией частиц, их счетной или весовой концентрацией, функцией распределения частиц по раз­мерам и т. д.

Другим отличительным признаком аэрозоля является его многофазность, т. е. гетерогенность. Гетерогенность приводит к взаимодействию двух разных фаз, сопровож­дается поверхностными явлениями (испарение, конденса­ция, сорбция и др.), отражающими особые свойства аэрозолей, их устойчивость и химическую активность.

Аэрозоли могут быть естественного и так называемого антропогенного, т. е. обусловленного деятельностью чело­века, происхождения. Природные аэрозоли чрезвычайно разнообразны. Это туманы, облака, пыль и дым, возни­кающие при извержении вулканов, лесных пожарах, пыльных бурях и т. д. Круговорот воды в природе содер­жит аэрозольную стадию.

Аэрозоли промышленного происхождения явились ин­дикаторами технического развития общества. Аэрозоли этого происхождения во многих странах сейчас уже при­носят ощутимый вред. Однако по основным свойствам аэрозоли различного происхождения оказываются одинаковыми.

В связи с этим под термином «происхождение» при­нято понимать причину, или, точнее, процесс, в резуль­тате которого возникает аэрозольная частица. Таких причин две: объемная конденсация пересыщенного пара вещества и его переход в жидкую или твердую фазу и дробление твердого или жидкого вещества, его диспергация, приводящая это вещество в пылевидное состояние.

Различие между этими аэрозолями заключается так­же в том, что конденсационные аэрозоли в отличие от диспергационных в большинстве случаев более тонкодис­персные, содержат частицы правильной формы или состоят из рыхлых агрегатов первоначальных частиц. Диспергационные аэрозоли более полидисперсны, а частицы, как правило, имеют неправильную форму (иглы, пла­стинки и др.).

Примером аэрозоля конденсационного происхожде­ния может служить бурый дым, который образуется при продувке кислородом ванны расплавленного металла. В зоне реакции кислорода с расплавом развивается вы­сокая температура, достаточная для испарения в этой зо­не некоторых компонентов расплава. По мере выхода парогазовой смеси в зону с пониженной температурой происходят конденсация паров и образование твердых аэрозольных частиц.

Принято различать три типа аэрозолей: дымы, пыли и туманы.

Дымами называются конденсационные аэрозоли с твердой дисперсной фазой. В ряде случаев в такой си­стеме могут присутствовать и жидкие частицы. Напри­мер, дым при неполном сгорании топлива содержит ка­пельки влаги и смолы; в некоторых видах дыма проис­ходит постепенное превращение жидких частиц в кристаллические при их переохлаждении.

Пыль представляет собой аэродисперсную систему с газообразной дисперсионной средой и твердой дис­персной фазой, состоящей из частиц широкого диапазо­на размеров, в основном диспергационного происхожде­ния.

Туманами называются аэрозоли, состоящие из сме­си газа и пара с капельками конденсата этого пара.

В воздухе промышленных городов содержатся части­цы различного происхождения и такой аэрозоль трудно отнести к какому-нибудь одному типу. Особенно опасны для здоровья человека аэрозоли, получившие название «смог» от двух английских слов: smoke (дым) и fog (ту­ман).

Многие свойства аэрозолей зависят от их дисперсно­сти. В зависимости от дисперсности частиц аэрозоли принято делить на три типа: высокодисперсные с диа­метром частиц от 10-3 до 1 мкм; тонкодисперсные с диа­метром частиц 1 - 10 мкм; грубодисперсные с диамет­ром частиц от 20 до 100 мкм.

Каждому из типов присущи некоторые одинаковые свойства.

По этому же принципу аэровзвеси делятся на тонкие с частицами от 0,2 до 1 мм и грубые с частицами бо­лее 1 мм.

Грубые аэровзвеси менее устойчивы, для их осажде­ния не требуется больших затрат, тонкие, наоборот, бо­лее устойчивы.

Для того, чтобы показать характерные особенности аэродис­персной системы, рассмотрим основные свойства сплошной и дис­персной фаз многофазных систем в отдельности.

 

ОСНОВНЫЕ ПОЛОЖЕНИЯ ГИДРОДИНАМИКИ

ГАЗОВОГО ПОТОКА

Промышленные газы и воздух, содержащие взвешенные твер­дые или жидкие частицы, представляют собой двухфазные систе­мы, состоящие из непрерывной (сплошной) среды и дисперсной фазы. Сплошной фазой в данном случае являются газы, дисперс­ной - твердые частицы или капельки жидкости. Подобные двух­фазные системы получили название аэродисперсных систем или аэрозолей.

Вопросы гидродинамики газового потока изложены в целом ряде фундаментальных монографий, поэтому ограничимся лишь самыми основными положениями, необходимы­ми для последующего изложения [2].

Теория движения газового потока базируется на двух основ­ных уравнениях гидродинамики: уравнении неразрывности движе­ния и динамическом уравнении движения несжимаемой жидкости (уравнении Навье - Стокса).

Уравнение неразрывности (сплошности) потока:

где ρ- плотность среды (газов), кг/м3; τ- продолжительность, с; υ- скорость газа (среды), м/с; х, у, z-направление осей координат.

Представляет собой выражение закона сохранения энергии, со­гласно которому изменение массы определенного элементарного объема газов компенсируется соответствующим изменением его плотности (). Для обычно рассматриваемого на практике случая установившегося движения = 0 и уравнение (1.1) суще­ственно упрощается.

Второе основное уравнение гидродинамики, уравнение Навье- Стокса, определяет систему сил, действующих в жидкости (газе), и по направлениям осей координат для элементарного объема жидкости (рис. 1) может быть представлено в виде:



(1.2)

где - давление в рассматриваемой точке потока, Па; μ- динамическая вяз­кость среды (газов), Па·с.

Анализ уравнения (1.2) показывает, что оно учитывает действие четырех сил: тяжести, давления, внутреннего трения (вязкости) и инерции. Сила тяжести (ρg) представляет собой внешний фак­тор, а остальные силы - результат действия окружающей среды на выделенный элементарный объем.

Дифференциальные уравнения (1.1) и (1.2) характеризуют внут­ренний механизм процесса, устанавливают взаимосвязь между физическими условиями процесса и изменениями этих условий во времени. Однако дифференциальные уравнения не учитывают внешних воздействий на систему, и поэтому должны быть дополнены граничными условиями, характеризующими взаимо­действие системы с внешней средой.

Рисунок1.1 - К выводу уравнения Навье-Стокса.

При обтекании газами твердых тел в непосредствен­ной близости к их поверхности образуется неподвижный слой. Хотя толщина этого слоя очень мала (всего несколько молекулярных слоев), он оказывает существенное влияние на течение. Принято считать, что гра­ничным условием при обтекании движущейся средой всех твердых поверхностей является равенство υгп = 0 (где υгп- скорость газов на поверхности тела).

На границе раздела двух фаз газ - жидкость скорость не должна установиться равной нулю, но выполняются следующие граничные условия:

1) тангенциальная слагающая скорости υт непрерывна, υгт= υжт(индексы «г» и «ж» относятся к газу и жидкости);

2) нормальная слагающая скорости равна нулю: υгн = υжт = 0.

3) силы, с которыми жидкость и газы действуют друг на друга, равны и противоположны по направлению.

Наряду с граничными условиями для характеристики состоя­ния системы в начальный момент процесса приводятся начальные условия.

Граничные и начальные условия в совокупности представляют собой краевые условия, выделяющие пространственно-временную область, в которой рассматривается процесс, и обеспечивающие единственность решения задачи.

Уравнения (1.1) и (1.2) фактически образуют систему с двумя не­известными υги ρ. Решить подобную систему в общем виде весь­ма трудно. Приближенное решение удается получить только в отдельных случаях, когда идут по пути упрощений уравнений с учетом конкретно поставленной задачи. Многие важные результаты при решении практических задач гидродинамики были получены благодаря применению методов теории подобия [3].

В результате подобного преобразования дифференциальные уравнения движения тазового потока могут быть заменены критериальным уравнением

(1.3)

где / - критерий Фруда, характеризующий отношение силы инерции к силе тяжести; - определяющий линейный параметр, м; / критерий Эйлера, характеризующий отношение силы давления к силе инерции ( - перепад давления, Па; ρг- плотность газов, кг/м3); / - критерий Рейнольдса, характеризующий отношение cилы инерции к силе трения μг- дина­мическая вязкость газов, Па·с).

Вид функциональной связи между критериями в уравнении (1.3) устанавливается опытным путем, причем критерий , включающий в себя переменную , не является определяющим и на­ходится в результате решения уравнения (1.3). Критерий играет важную роль, когда на движение потока оказывают существенное влияние гравитационные силы. При решении многих практических задач оказывается, что действие силы тяжести весьма незначи­тельно, и им можно пренебречь. Практически сила тяжести не учитывается и в общем случае вынужденного движения газового потока, т. е. как бы происходит вырождение критерия , и он выпадает из числа аргументов уравнения (1.3).

Важнейшей характеристикой процесса движения газового по­тока является критерий . При малых значениях критерия преобладают силы трения и наблюдается устойчивое ламинарное течение газа - газовый поток движется вдоль стенок, определяю­щих направление потока. С ростом критерия ламинарный ре­жим постепенно теряет устойчивость и при некотором критиче­ском значении переходит в турбулентный. В турбулентном ре­жиме отдельные массы газов могут перемещаться в любом на­правлении, в том числе в направлении стенки и в направлении об­текаемого потоком тела.

Турбулентное течение жидкости. Автомодельный режим. Истинное значение любой величины для конкретного момента движения в данной точке при турбулентном режиме представляет собой сумму величин, характеризующих основное и пульсационное течения.

Турбулентные пульсации определяются как их скоростью, так и масштабом движения. Самые быстрые пульсации имеют наи­больший масштаб. Так, при движении в трубе масштаб наиболь­ших пульсаций совпадает с диаметром трубы. Величина пульса­ций оценивается критерием λλ/νг (где υλ- скорость пуль­саций; λ - масштаб движения; νг- кинематическая вязкость газов, м2/с). У крупномасштабных пульсаций значение величины совпадает со значением величины для потока в целом, т. е. скорость пульсаций υλравна средней скорости движения потока υг, а масштабный фактор λ≈ (при движении по трубе диамет­ром Dтp фактор λ = Dтp) и вязкие силы не оказывают никакого влияния на движение потока.

Мелкомасштабные пульсации возникают в результате нало­жений крупномасштабных пульсаций. При некотором значении λ = λ0 = λ0υλ0г становится равным единице, и вяз­кие силы начинают влиять на характер движения.

Турбулентный поток может быть охарактеризован некоторой константой εп, выражающей величину потери энергии(в Дж за 1 с в единице объема)

Многие важные зависимости, применяемые в механике аэрозо­лей и связанные с турбулентным движением газового потока, со­держат величину отношения г, которая обозначается через и измеряется в м23.

Скорость мелкомасштабных пульсаций (λ<< ) в газовом объе­ме, т. е. вдали от стенок, при невязком характере движения (λ>>λ0) может быть определена из выражения

Уменьшению скорости и масштаба пульсаций соответствует уменьшение числа Reλ по закону

Откуда масштабλ0, при котором =1, будет соответственно ра­вен

Начиная с λ = λ0движение газов принимает вязкий характер, и турбулентные пульсации масштаба λ≤λ0постепенно затухают.

При движении газового потока вдоль стенки на расстоянии zот нее средняя скорость потока может быть найдена по формуле, предложенной Прандтлем:

где υz-средняя скорость потока на расстоянии zот стенки, м/с; υ* -харак­терная для данного потока скорость турбулентных пульсаций, м/с.

В гладких трубах при <105 величина υ* может быть най­дена из выражения:

(1.9)

На весьма малом расстоянии от стенки, где имеется вязкий подслой (пограничный слой) толщиной δ0 эта формула неприменима.

Движение газового потока в пылеуловителях обычно протека­ет при больших значениях критерия и носит турбулентный ха­рактер. При турбулентном режиме соблюдается зависимость

ζ = (1.10)

где ζ- коэффициент гидравлического сопротивления; А, - постоянные.

С увеличением влияния инерционных сил [3] происходит уменьшение показателя степени у критерия , причем, чем ин­тенсивней турбулентность потока, тем меньше величина n. Так, для турбулентного движения в трубах при =104-105 =0,25; при 105< <106 =0,21 и т. д. Дальнейшее развитие турбулент­ности приводит к постепенному вырождению критерия , когда он выпадает из числа аргументов критериального уравнения (1.3). В этом случае при совершенно произвольном выборе параметров (размера, скорости, плотности и вязкости потока) и тождествен­ности краевых условий характер движения остается подобным, а само движение становится автомодельным (режим разви­той турбулентности). Эта область движения характери­зуется «квадратичным законом» сопротивления (ζ = const).

Вследствие трения в газовом потоке вокруг обтекаемого тела или у стенки, вдоль которой он движется, образуется погранич­ный слой. За толщину пограничного слоя δ0 принимается тол­щина слоя газов, в котором происходит изменение скорости дви­жения от 0 до характерной для потока величины υг.

Исключительно важную роль играет пограничный слой при турбулентном движении. Однако до настоящего времени нет еди­ного подхода к оценке характера движения в нем. Распределение скоростей в турбулентном пограничном слое может быть опреде­лено из выражения

а сама толщина слоя - из выражения

В пограничном слое движение газового потока строго ламинарно. Ввиду отсут­ствия турбулентных пульсаций перенос вещества осуществляет­ся в нем преимущественно за счет молекулярной диффузии.

В пограничном слое турбулентные пульсации не исчезают внезапно, а постепенно за­тухают, приближаясь к поверхности стенки (или обтекаемого тела).

При z<δ0 поток вещества, переносимый турбулентными пуль­сациями, меньше, чем поток, переносимый за счет молекулярной диффузии. Тем не менее наличие турбулентных пульсаций в по­граничном слое играет важную роль при переносе вещества к твердой поверхности. В диффузионном подслое толщиной δд 0>>δд), который находится у стенки, молекулярная диффузия полностью преобладает над турбулентной. На границе диффузи­онного подслоя совпадают коэффициенты турбулентной и моле­кулярной диффузии. Величина диффузионного подслоя может быть найдена из выражения

где г/D- критерий Шмидта; D- коэффициент молекулярной (тепловой) диффузии, м2/с.

При обтекании тел, имеющих значительную кривизну (сфера, цилиндр и т. п.), картина образования пограничного слоя имеет довольно сложный характер. Так, в случае обтекания цилиндра на фронтальной его части образуется пограничный слой, анало­гичный слою, образующемуся на плоской стенке. Однако перемен­ные величины скорости и давления газового потока, движущегося вокруг цилиндра (вне пограничного слоя), приводят к отрыву га­зовых струй от поверхности. Скорость газов минимальная в перед­ней точке (точке набегания), плавно нарастает до экваториальной плоскости, а затем снова уменьшается. Давление же газов изме­няется от максимума в точке набегания до минимума в эквато­риальном сечении с последующим возрастанием в «кормовой ча­сти» цилиндра. Поэтому в передней части цилиндра газы в погра­ничном слое движутся в направлении градиента давления, в зад­ней части - в направлении, противоположном градиенту давле­ния. Градиент давления тормозит медленно движущиеся слои га­зов в прилегающем к обтекаемому телу слою, и в некоторой точке за экваториальной плоскостью противодавление полностью затор­мозит газовый поток у поверхности. Ниже этой точки вблизи стен­ки возникает возвратное движение газов, слои газов из погранич­ного слоя оттесняются от поверхности тела. Оторвавшийся погра­ничный слой в виде вихря движется в общем газовом потоке. От­рыв вихрей начинается при значениях критерия Рейнольдса для обтекаемого тела = υг ггде - характерный линейный па­раметр обтекаемого тела; для шара и цилиндра - их диаметр) по­рядка 20, а при значениях порядка 100 - 300 движение газов за точкой отрыва турбулизуется.

КЛАССИФИКАЦИЯ ПРОМЫШЛЕННЫХ

ПРЯМОЙ МЕТОД

Запыленность газов может изменяться как во времени (из-за колебания нагрузок и режимов основного технологического обо­рудования), так и по сечениям газоходов. Неравномерность концентрации пыли в раз­личных точках сечения связана с расслое­нием пылегазового потока под действием инерционных сил, возникающих при движе­нии газов внутри коленьев, несимметрич­ных участков и при других препятствиях. Повышение скорости газов вызывает соот­ветствующее увеличение расслоения пыле­газового потока, причем, чем крупнее и тя­желее частицы, тем в большей степени наблюдается их сегрегация на неровных участках газового тракта.

В горизонтальных газоходах большой протяженности может наблюдаться повы­шенная концентрация крупной пыли в ниж­ней части их сечений за счет гравитацион­ных сил.

Из-за неравномерности запыленности газов во времени для получения достаточно надежных результатов обычно приходится производить ряд замеров с последующим усреднением полученных результатов. Из-за неравномерности концентрации пыли в разных точках сечения для определения средней по сечению газохода запыленности замеры должны производиться с разбивкой сечения на равновеликие площадки, так же как при определении динамических давлений.

Важным фактором, влияющим на точность получаемых результатов, является скорость во входном отверстии используе­мого пробоотборного устройства, которая должна быть равна скорости запыленного потока в газоходе (изокинетический отбор газа). Если скорость отбора превышает скорость газового потока, более крупные частицы пыли из внешней части отбираемо­го объема газа, стремясь по инерции со­хранить прежнее направление движения, пройдут мимо входного отверстия пробоотборного устройства. B результате получен­ная величина запыленности окажется зани­женной, а отобранная пыль будет более мелкой. При отборе с пониженной ско­ростью произойдет обратное явление. Более крупные частицы пыли из внешней откло­няемой и не входящей в отбираемый объем части газового потока по инерции пройдут во входное отверстие пробоотборного устройства. B результате полученная величина запыленности окажется завышен­ной, а отобранная пыль будет более круп­ной. При отклонении входного отверстия от положения, перпендикулярного направ­лению газового потока, даже при соблюде­нии равенства скоростей будут получены заниженные результаты определения запы­ленности, а отобранная пыль будет более мелкой. Перечисленные явления наглядно иллюстрируют рис. 1.4.

Приведенные рассуждения полностью справедливы для случая отбора газа через трубки с очень тонкими стенками. Практи­чески же газ отбирается с помощью пробоотборных устройств, имеющих значитель­ные наружные размеры по сравнению с размерами входного отверстия, перед которыми образуется зона застоя с понижен­ной скоростью и сильным искривлением линий тока.

а - правильная скорость отбора; б - повышенная; в - пониженная г - при правильной скорости отбора сечение входного отверстия пылезаборной трубки не перпендикулярно оси потока. ● - крупные частицы; • - мелкие частицы.

Рисунок 1.4 - Возможные ошибки при отборе газов для определения запыленности.

Повышение скорости отбора способствует размыванию этой зоны и получению более точных результатов определения запыленности газов. Поэтому скорость отбора газа предпочтительно несколько завышать и тем больше, чем большие возмущения газового потока способно вызвать применяемое пробоотборное устройство.

Расход газов, необходимый по крайней мере для формального соблюдения усло­вий, обеспечивающих представительность отбираемой пробы, при заданном диаметре пылезаборного отверстия может быть определен по формуле

- скорость газа, м/с.

Эта формула позволяет перейти к бо­лее удобному для практического использо­вания выражению расхода газов в литрах в минуту:

Вместо расчетов по формуле 1.23 для получения необходимых величин можно пользоваться номограммой, приведенной на рис. 1.5.

Осаждение частиц для последующего взвешивания при определении запыленно­сти может производиться внутри газохода или снаружи. В последнем случае пробы отбираются с помощью заборных трубок.

Аппаратура для определения запыленности газов прямым методом должна состоять из заборной трубки (при осаждении пыли вне газохода), устройства для осаждения пыли, устройства для измерения расхода отбираемых газов и средства для отсоса газов.

Заборные трубки, как правило, снабжаются электрическим (реже паровым) обогревом. При температуре обогрева трубки выше температуры отбираемого газа за счет термофореза уменьшается осаждение пыли на ее стенках, при высоком влагосодержании газов обогрев необходим для предотвращения конденсации водяных паров. Во избежание осаждения частиц в канале трубки во время отбора пробы рекомендуется поддерживать скорость газов равной 20-30 м/с; скорости более 30 м/с значительно увеличивают гидравлическое сопротивление трубки. Для того чтобы одной и той же заборной трубкой можно было пользоваться при различных скоростях газового потока в газоходе, трубка снабжается комплектом сменных наконечников различного диаметра.

 

Рисунок1.5 - Номограмма для подбора диа­метра наконечника пылезаборной трубки d.

Применение заборных трубок с водяным охлаждением позволяет использовать их при неограниченно высокой температуре запыленного газа.

После проведения нескольких опытов (обычно в конце дня) заборную трубку сле­дует прочищать, причем пыль, извлекаемую из трубки, нужно собрать и взвесить.

Полученную массу нужно разделить на общее количество пропущенного газа, определив, таким образом, массу пыли на 1 м3 газа. Зная количество пропущенного в каждом опыте газа, следует внести соот­ветствующую поправку в каждый опыт.

При умеренной запыленности для осаждения пыли служат различные филь­тры. При большой запыленности фильтры быстро забиваются. Для того чтобы исклю­чить влияние случайных кратковременных изменений запыленности и точно учесть объем отобранного газа, желательно иметь не очень короткое время отбора пробы. Поэтому при большой запыленности перед фильтром устанавливается небольшой циклончик, в котором происходит осаждение большей части пыли, а фильтр служит лишь для учета массы мелких частиц, про­скочивших через циклончик.

При осаждении пыли вне газохода к заборным трубкам могут быть присоеди­нены заключенные в специальные патроны бумажные или тканевые фильтры или цилиндрические стеклянные фильтровальные патроны соответствующих размеров, набитые стеклянной ватой и асбестовым волокном, прокаленным при 400°С. Стеклянные фильтро­вальные патроны присоединяются к пылезаборной трубке и отсосной линии с по­мощью резиновых пробок с отверстиями (рис 1.6).

 

1 - стеклянная вата или стекловолокно; 2 - асбестовый тампон; 3 - металлическая сетка.

Рисунок1.6 - Стеклянный фильтровальный патрон.

Бумажные фильтры изготовляются из обычной фильтровальной бумаги и приме­няются при температуре проходящего че­рез них газа, не превышающей 105 °С. В бумажном фильтре можно осадить от 1,5 до 7 г пыли (в зависимости от ее дис­персности). В тканевом фильтре можно осадить 50 - 80 г пыли. Для фильтрации газов с температурой до 100 °С применяют­ся ворсистые шерстяные ткани, а с темпе­ратурой свыше 100 °С (до 350 °С) - ткань из стекловолокна.

Во избежание конденсации паров воды патроны для бумажных или тканевых фильтров имеют электрообогрев, стеклянные трубки теплоизолируют­ся. Теплоизоляция стеклянных трубок должна быть легкосъемной, так как ее приходится удалять перед, взвешиванием.

Для измерения рас­хода газов при отборах пpоб на запылен­ность обычно пользуются реометрами или ротаметрами. При этом могут быть исполь­зованы реометры как заводского, так и местного изготовления.

Реометр может быть изготовлен в стеклодувных мастер­ских предприятий.

Приближенную градуировку такого реометра можно произвести при помощи газового счетчика. Трудность изготовления стеклянных диафрагм с точно заданными размерами отверстий требует тарировки каждой диафрагмы. Из-за несимметрично­сти профиля оплавленного отверстия стек­лянной диафрагмы изменение направления движения газа в ней может значительно изменить показания прибора. Поэтому на диафрагму наносится стрелка, указываю­щая направление движения газа, при кото­ром производилась тарировка.Ротаметр представляет собой верти­кальную трубку, несколько расширенную кверху в виде конуса, внутри которой на­ходится поплавок, свободно плавающий в измеряемом газовом потоке. Поплавок при протекании газового потока поднима­ется до тех пор, пока кольцевой зазор между поплавком и стенкой трубки не уве­личивается настолько, что подъемная сила, воздействующая на поплавок, уравновесится весом поплавка. Прибор должен устанавливаться строго вертикально.

Основные технические характеристики ротаметров типа PC с пределами показа­ний, которые позволяют использовать их при пылегазовых замерах, приведены в табл. 1.1.

Недостатком (ротаметров является то, что они очень чувствительны к конденсации влаги на стенках трубки и поплавке.
Если это происходит, прибор начинает давать заметные погрешности, значительно большие, чем реометр.

 

Таблица 1.1 - Технические характеристики стеклянных ротаметров типа РС

Тип Пределы показаний по воздуху, м3/ч, и масса поплавка m, г
Сталь 1Х18Н9Т Дюралюминий анодированный Эбонит
макс. мин. m макс. мин. m макс. мин. m
РС-З РС-5 1.0 0,2 1.6 1,05 15,8 0,63 6,3 0,1 1.0 0,35 6,25 0,35 4,0 0,04 0,63 0,2 2,73

 

Возможный вариант компоновки оборудования для определения запыленности газов приведен на рис. 1.7.

Рисунок 1.7 - Установка для определения запыленности газов

КОСВЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗАПЫЛЕННОСТИ

Косвенные методы определения запы­ленности газов основаны на использовании различных физических явлений, протекание которых изменяется в зависимости от кон­центрации частиц в газовой среде. В опти­ческих приборах для определения запылен­ности газов используют либо измерение интенсивности рассеянного частицами пыли света, либо измерение интенсивности свето­вого пучка, ослабленного вследствие погло­щения, рассеяния и преломления света, про­ходящего через пылегазовую среду. В элек­трических приборах о концентрации частиц судят по величине снимаемого с них элек­трического заряда. Приборы с использо­ванием фильтрации газов позволяют оце­нивать запыленность по некоторым свойст­вам осевшего на фильтрующем материале слоя содержавшихся в газах частиц: по гидравлическому сопротивлению этого слоя, ослаблению проходящего через слой света или радиоактивного излучения и т. п.

Любой из приборов для определения запыленности газов косвенными методами нуждается в предварительной калибровке на данный вид пыли прямым методом. Кроме этого, ни один из используемых в настоящее (время косвенных методов не обладает достаточной надежностью в при­емлемо широком диапазоне изменений за­пыленности газов и дисперсного состава, частиц.

ДИФФУЗИОННОЕ ОСАЖДЕНИЕ

Частицы малых размеров подвержены воздействию броунов­ского (теплового) движения молекул. Перемещение частиц в этом случае описывается уравнением Эйнштейна [2], согласно которо­му средний квадрат смещения частицы составляет

(2.40)

где Dч- коэффициент диффузии частицы, характеризующий интенсивность броу­новского движения, м2

При справедливости закона Стокса, когда размер частиц боль­ше среднего пути пробега молекул, коэффициент диффузии можно выразить как функцию размера частиц



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 370; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.27.202 (0.093 с.)