Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные типы двигателей Асинхронные микродвигателиСодержание книги
Поиск на нашем сайте
Самыми распространенными силовыми микродвигателями автоматики в настоящее время являются асинхронные двигатели. По своему устройству это двигатели с короткозамкнутым ротором, который чаще всего имеет обмотку, изготовленную в виде беличьей клетки. Реже ротор изготовляется массивным и полым из чугуна или стали, что делается либо для получения мягких механических характеристик, либо ради достижения особой механической прочности ротора, необходимой при высоких частотах вращения, либо с целью уменьшения акустического шума при работе двигателя. Асинхронные двигатели с фазовым ротором не выпускаются. Классификация силовых асинхронных микродвигателей представлена на рис. 18.1. В качестве силовых двигателей в схемах автоматики очень часто применяются трехфазные и однофазные асинхронные микродвигатели широкого применения, рассчитанные на работу от сети с частотой 50 Гц. Так как механическая мощность асинхронного двигателя практически (при прочих равных условиях) прямо пропорциональна частоте питающего напряжения (Р ~ Мп ~ Мпс ~ M60f/p ~ f), а габаритные размеры определяются значением вращающего момента М, то в схемах автоматики очень часто применяют асинхронные двигатели, рассчитанные на работу от напряжений повышенной частоты f.
Применение асинхронных двигателей повышенной частоты в целом ряде случаев диктуется не только стремлением уменьшить габариты машины, но и рядом других соображений: необходимостью иметь более высокие угловые скорости вращения, работой автоматических систем от сетей повышенной частоты и др. В ряде схем автоматики возникает обратная задача — необходимость получения малых частот вращения п. У асинхронных и синхронных двигателей переменного тока средних и больших мощностей этого можно легко достичь за счет увеличения числа пар полюсов p, так от этого зависит как синхронная частота вращения пс:
Для двигателей малых мощности и габаритных размеров этот способ практически неприемлем, особенно если они рассчитаны на работу от сетей повышенной частоты. При малых габаритах увеличение числа пар полюсов p, а следовательно, и числа пазов двигателя весьма затруднительно, а иногда и невозможно. С целью получения низких частот вращения приходится применять специальные тихоходные двигатели либо с электромагнитной редукцией частоты вращения, либо с катящимся или волновым роторами. В большинстве схем автоматики силовые двигатели питаются не от трехфазных, а однофазных сетей переменного тока. Именно поэтому в качестве силовых в основном используются однофазные двигатели. Трехфазные двигатели в схемах автоматики используются значительно реже. Однофазные асинхронные двигатели по своему устройству в подавляющем большинстве случаев являются двухфазными. Они, как правило, имеют на статоре две обмотки, сдвинутые в пространстве на 90°. Одна обмотка называется рабочей, или главной. Она подключается непосредственно к однофазной сети. Другая обмотка называется пусковой, или вспомогательной. Она подключается к однофазной сети через фазосдвигающий элемент либо только на время пуска, либо постоянно. В некоторых двигателях вспомогательная обмотка вообще не подключается к сети, а ЭДС в ней наводится потоком главной обмотки. В зависимости от типа фазосдвигающего элемента, а также от способа использования вспомогательной (пусковой) обмотки силовые однофазные асинхронные (и синхронные) микродвигатели можно разделить на пять групп: с пусковым сопротивлением; пусковым конденсатором; пусковым и рабочим конденсатором; рабочим конденсатором; экранированными полюсами. Кроме однофазных микродвигателей в системах автоматики в качестве силовых используются также универсальные асинхронные микродвигатели, которые, являясь по своему назначению трехфазными, при изменении схемы соединения обмоток — фаз и включении фазосдвигающих элементов могут работать и от однофазных сетей переменного тока.
Синхронные микродвигатели
Основной особенностью синхронных микродвигателей, определяющей области их применения, является постоянство частоты вращения при неизменной частоте f питающей сети. Частота вращения ротора двигателя в синхронном режиме (при M сопр < М mах) не зависит от колебаний напряжения питания и момента сопротивления. Она равна частоте вращения магнитного поля, т.е. синхронной частоте вращения:
В настоящее время в схемах автоматики синхронные микродвигатели применяются очень широко. По конструктивному исполнению они весьма разнообразны, особенно однофазные микродвигатели малых мощностей (от долей ватт до нескольких ватт). Двигатели с номинальной мощностью от десятков до сотен ватт имеют обычное классическое исполнение. Они состоят из неподвижной части — статора, в пазах которого размещается трехфазная или двухфазная обмотка переменного тока, и вращающейся части — ротора, который у большинства двигателей имеет явно выраженные полюсы. В зависимости от конструкции ротора различают синхронные микродвигатели с электромагнитным возбуждением, постоянными магнитами, реактивные и гистерезисные. На рис. 18.2 представлены основные конструктивные схемы синхронных микродвигателей. Кроме двигателей обычного исполнения в схемах автоматики иногда встречаются обращенные синхронные микродвигатели, обмотка переменного тока которых размещается в пазах ротора. Микродвигатели с электромагнитным возбуждением (с обмоткой возбуждения постоянного тока на полюсах) вследствие сложности их конструкций и пуска, а также необходимости наличия источника постоянного тока для питания обмотки возбуждения в схемах автоматики применяются очень редко. Синхронные микродвигатели выпускаются как на промышленную частоту 50 Гц, так и на повышенные частоты 400, 500, 1000 Гц. Кроме обычных двигателей в схемах автоматики широко применяются тихоходные двигатели с электромагнитной редукцией частоты вращения, работающие на зубцовых гармониках поля, и двигатели с катающимся или волновым роторами. Иногда для получения низких частот вращения используются обычные двигатели со встроенными редукторами. Выпускаются несколько серий синхронных микродвигателей, которые широко применяются в приборах звуко- и видеозаписи, кино- и фотоаппаратуре, системах связи, всевозможных лентопротяжных устройствах и т. п.
К синхронным микродвигателям предъявляются как общие для всех электрических машин требования — высокие энергетические показатели (n и cosφ), малые габариты, масса и т.п., так и специфические для синхронных двигателей требования, которые зависят от схемы, в которой применяется двигатель. В одних схемах от двигателя требуется постоянство средней частоты вращения, в других — постоянство мгновенной частоты вращения в пределах одного оборота ротора и т. п. Кроме синхронных микродвигателей непрерывного вращения нашли применение импульсные шаговые двигатели.
|
||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 389; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.73.157 (0.01 с.) |