Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вязкость жидкости. Формула Ньютона.

Поиск

Коэффициент вязкости

Вязкость – одно из важнейших явлений, наблюдающихся при движении реальной жидкости.

Всем реальным жидкостям (и газам) в той или иной степени присуща вязкость, или внутреннее трение. При течении реальной жидкости между ее слоями возникают силы трения. Эти силы получили название сил внутреннего трения или вязкости. Вязкость – это трение между перемещаемыми относительно друг друга слоями жидкости (или газа). Силы вязкости (внутреннего трения) направлены по касательной к соприкасающимся слоям жидкости и противодействуют перемещению этих слоев относительно друг друга. Они тормозят слой с большей скоростью и ускоряют медленный слой. Можно указать две основные причины, обусловливающие вязкость:

во-первых, силы взаимодействия между молекулами соприкасающихся слоев, движущихся с различными скоростями;

во-вторых, переход молекул из слоя в слой и связанный с этим перенос импульса.

Вследствие этих причин слои взаимодействуют друг с другом, медленный слой ускоряется, быстрый замедляется. В жидкостях ярче выражена первая причина, в газах – вторая.

Рис. 9

Для выяснения закономерностей, которым подчиняются силы внутреннего трения, рассмотрим следующий опыт. Возьмем две горизонтальные пластины со слоем жидкости между ними (рис.9). Верхнюю пластину приведем в движение с постоянной скоростью . Для этого к пластине надо приложить силу для преодоления силы трения , действующей на пластину при ее движении в жидкости. Слой жидкости, прилегающий непосредственно к верхней пластине, благодаря смачиванию прилипает к пластине и движется вместе с ней. Слой жидкости, прилипший к нижней пластине, удерживается вместе с ней в покое, . Промежуточные слои движутся так, что каждый верхний из них обладает скоростью большей, чем под ним лежащий. Стрелками на рис.9 показан «профиль скорости» потока. Вдоль оси r, перпендикулярной вектору , скорость нарастает. Измерение скорости характеризуют величиной .

Величина показывает, какое измерение скорости приходится на единицу длины вдоль направления изменения скорости, т.е. определяет быстроту изменения скорости и направления, перпендикулярной самой скорости. От этой величины зависит трение между слоями. Величина измеряется в .

Ньютон установил, что сила трения между двумя слоями жидкости прямо пропорциональна площади соприкосновения слоев и величине :

. (13)

Формула (13) называется формулой Ньютона для вязкого трения. Коэффициент пропорциональности получил название коэффициента вязкости (внутреннего трения). Из (13) видно, что

.

В системе единицей измерения коэффициента вязкости является

(паскаль – секунда),

в СГС – системе коэффициент вязкости измеряется в (пуазах), причем

.

Жидкости, для которых выполняется формула Ньютона (13), называют ньютоновскими. Для таких жидкостей коэффициент вязкости зависит только от температуры. Из биологических к ньютоновским жидкостям можно отнести плазму крови, лимфу. Для многих реальных жидкостей соотношение (13) строго не выполняется. Такие жидкости называют неньютоновскими. Для них коэффициент вязкости зависит от температуры, давления и ряда других величин. К таким жидкостям относятся жидкости с крупными сложными молекулами, например, цельная кровь.

Вязкость крови здорового человека , при патологии колеблется от , что сказывается на скорости оседания эритроцитов. Вязкость венозной крови больше, чем артериальной.

 

Течение вязкой жидкости по цилиндрическим трубам.

Формула Пуазейля. Ламинарное и турбулентное течение жидкости.

Понятие о числе Рейнольдса

 

Жидкость, протекающую по цилиндрической трубе радиуса R, можно представить разделенной на концентрические слои (рис.10).

 

 

Рис.10

 

 

В каждом таком слое скорость течения постоянна, но от слоя к слою изменяется. Слой, прилипший к стенкам трубы, имеет скорость, равную нулю, V min=0. Слой, текущий вдоль оси трубы, имеет максимальную скорость V max. Профиль скорости в этом случае является параболой (рис.10, а). Вдоль радиуса трубы (ось r) скорость изменяется, и это изменение характеризуется величиной .

Задача о течении вязкой жидкости по цилиндрическим трубам имеет исключительно важное значение для физиологии, так как кровеносная система является системой из многократно разветвляющихся цилиндрических сосудов различных диаметров.

Важнейшую закономерность течения вязкой жидкости по цилиндрическим трубам представляет формула Пуазейля, позволяющая рассчитать объем жидкости, протекающий через поперечное сечение трубы за одну секунду:

,

где - объем жидкости, протекающей через поперечное сечение трубы за время . Используя формулу (1), можно записать

,

где - средняя скорость течения жидкости в трубе. Тогда, учитывая, что S= запишем Q = .

Для вычисления выделим в объеме текущей жидкости малый цилиндр произвольного радиуса r длиной l (рис.11). Обозначим давление в жидкости слева от выбранного цилиндра через Р 1, а справа - через Р 2. На малый цилиндр в потоке действуют две силы: 1, обусловленная разностью давлений - Р 2, сообщающая цилиндру ускорение, и сила - сила трения (вязкости), которую испытывает этот цилиндр, перемещаясь в потоке жидкости.

 

Рис.11

 

 

Для силы F 1 запишем

F 1=

где S1= - площадь поперечного сечения малого цилиндра.

Используя формулу Ньютона, для силы F 2 получим:

F 2 = ,

где S 2 = 2 боковая поверхность малого цилиндра (поверхность соприкосновения этого цилиндра с остальным объемом жидкости).

Чтобы цилиндр двигался с постоянной скоростью, надо чтобы силы и уравновешивали друг друга, т.е. должно выполняться условие

. (15)

Условие (15) через модули сил запишем в виде F 1=- F 2 или, подставив значение сил, получим

(Р 1- Р 2) = - . (16)

Произведем сокращения и выразим из этого уравнения :

.

Проинтегрируем полученное уравнение, подставив предел интегрирования:

,

или . (17)

На осевой линии трубы r =0, а скорость , тогда (17) можно переписать в виде . (18)

Формула (18) была получена французским физиком и физиологом Пуазейлем в 1841 году. Из (18) видно, что максимальная скорость течения жидкости по трубе прямо пропорциональна перепаду давления квадрату радиуса трубы R и обратно пропорциональна коэффициенту вязкости жидкости и длине цилиндра l. Подставляя (18) в (14),получим Q = , или в окончательном виде

  (19)
Q = .

 

Полученное выражение носит название формулы Гагена - Пуазейля, или формулы Пуазейля.

Таким образом, объем жидкости Q, ежесекундно протекающей через поперечное сечение трубы, прямо пропорционален четвертой степени радиуса трубы R (Q~R 4), разности давлений и обратно пропорционален коэффициенту вязкости и длине трубы .

Часто проводят аналогию между формулой Пуазейля и законом Ома для однородного участка цепи (сила тока прямо пропорциональна разности потенциалов на участке цепи и обратно пропорциональна сопротивлению R этого участка.) Формулу (19) представим в виде

Q = .

Величину С = называют гидравлическим сопротивлением. Оно тем больше, чем больше вязкость жидкости и длина трубы l, и зависит обратно пропорционально от четвёртой степени радиуса трубы R.

Таким образом, объём жидкости, ежесекундно протекающей через поперечное сечение трубы, прямо пропорционален разности давлений и обратно пропорционален гидравлическому сопротивлению С.

Аналогия между сопротивлением в электрической цепи и гидравлическим сопротивлением позволяет использовать правила для расчета сопротивления при последовательном и параллельном соединении труб с различными сопротивлениями.

Общее гидравлическое сопротивление труб, соединённых последовательно, рассчитывается по формуле

С=С123+…,

 

а соединённых параллельно - по формуле

.

Формула Пуазейля справедлива не для любого течения вязкой жидкости, а только для ламинарного течения.

В гидродинамике различают два вида течения жидкости – ламинарное и турбулентное.

Рис.12

Ламинарным называют слоистое течение, при котором слои не перемешиваются друг с другом. Для цилиндрического профиля трубы профиль скорости такого течения дан на рис.10,а.

Турбулентным называют течение, при котором происходит интенсивное перемешивание слоёв, образуются завихрения жидкости.

Турбулентность увеличивает гидравлическое сопротивление. Профиль скорости такого движения в цилиндрической трубе показан на рис.12.Вблизи стенок трубы наблюдается большой перепад скорости, скорость быстро нарастает от 0 до V – некоторого среднего значения скорости частиц, что позволяет считать такое течение в среднем однородным.

Характер течения жидкости (ламинарное или турбулентное) определяется целым рядом факторов: вязкостью жидкости, сечением трубы, скоростью течения и плотностью жидкости.

Как уже рассматривалось выше, на любой малый объём жидкости в потоке действуют ускоряющая сила и сила вязкого трения . Характер течения будет определяться отношением . Чем больше это отношение, тем больше вероятность возникновения вихрей, а следовательно, и турбулентного течения. Английский физик и инженер Рейнольдс рассчитал безразмерное отношение F 1/ F 2. Это отношение получило название числа Рейнольдса Re. Очевидно, число Re есть величина безразмерная:

= , (20)

 

где плотность жидкости, l –характерный линейный размер сечения трубы (диаметр или радиус для цилиндрического сечения трубы, высота – для треугольного, сторона – для квадратного), скорость потока, коэффициент вязкости.

Так как число Рейнольдса зависит от двух характеристик жидкости – вязкости и плотности , то целесообразно ввести в это число величину называемую кинематической вязкостью. Тогда (20) принимает вид

.

Переход от ламинарного течения к турбулентному определяется критическим числом Рейнольдса.

При числах течение носит ламинарный характер, при > течение становится турбулентным. Критические значения числа Рейнольдса определяются только экспериментально. Для гладких цилиндрических труб 1000, если за принять радиус трубы. Число Рейнольдса играет большую роль во многих количественных исследованиях течения жидкости и газа. Оно является критерием подобия при создании моделей гидро- и аэродинамических систем и, в частности, кровеносной системы. Важно, чтобы модель имела то же число Рейнольдса, что и сама система. Это достигается соответствующим подбором скорости, вязкости и линейного размера сечения модели. Из (20) видно, что увеличение размеров сечения можно скомпенсировать уменьшением скорости течения или подбором жидкости с соответствующими значениями вязкости и плотности .

Течение крови в сосудах носит в норме ламинарный характер, небольшая турбулентность наблюдается вблизи клапанов сердца. При патологии число Re может превысить критическое значение и течение станет турбулентным, что можно обнаружить по характерным шумам и использовать в диагностике заболеваний.

 

ПРАКТИЧЕСКАЯ ЧАСТЬ



Поделиться:


Последнее изменение этой страницы: 2016-06-26; просмотров: 4395; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.195.30 (0.008 с.)