Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Исследование работы датчиковСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Цель работы: 1. Изучение тензорезистивного проволочного датчика и получение его характеристик. 2. Изучение датчика температуры - термопары. Приборы и принадлежности: четыре транзистора, металлическая балка, набор грузов для нагружения балки, микроамперметр, потенциометр, источник питания, термопара, милливольтметр. ТЕОРИЯ Устройство и классификация датчиков Датчик - устройство, преобразующее внешнее воздействие в электрический сигнал. В медицине и биологии датчики используются в качестве устройств съема информации о медико-биологической системе, если исследуемый параметр имеет неэлектрическую природу. Простейшая схема датчика дана на рис. 1.
Исследуемый параметр медико-биологической системы X воздействует на преобразователь 1, превращающий Х в электрический сигнал Y (рис.1, а). Величину X называют естественной входной величиной, величину Y - выходной величиной. При использовании нескольких преобразователей применяют каскадное включение (рис.1, б): входная величина X поочередно превращается в величины X 1, X 2, X 3,..., Y. Преобразующие свойства датчиков определяются их характеристикой, чувствительностью, порогом чувствительности, пределом преобразования, номинальной погрешностью. Характеристикой датчика называют функциональную зависимость выходной величины y от входной величины x, то есть . Обычно стремятся использовать линейную зависимость между выходным сигналом и выходной величиной. Если это не удается, то используют другие виды зависимости – квадратичную, логарифмическую, экспоненциальную и т.д.
На рис.2 дана линейная характеристика датчика. D x -изменение входной величины, D y - изменение выходной величины. Чувствительностью датчика называют отношение Чувствительность показывает, какое изменение выходной величины соответствует изменению входной величины Δ х =1. Порогом чувствительности датчика называют минимальное значение изменения входной величины (D x min), которое может зарегистрировать данный датчик. Предел преобразования датчика - это максимальное значение (x max) входной величины, которое датчик может преобразовать без искажений. Информация о входной величине может быть искажена вследствие погрешностей, возникающих при работе датчика. Из-за погрешностей характеристика датчика из линии размывается в полосу определенной ширины. Среднюю линию полосы называют номинальной характеристикой. Величину b /2, равную половине ширины полосы, называют номинальной погрешностью датчика. Номинальную характеристику и номинальную погрешность указывают в паспорте датчика. Погрешности датчиков обусловлены следующими причинами: - непостоянством функции преобразователя во времени из-за старения и коррозии материалов, из-за износа подвижных частей датчика; - несовершенством технологии изготовления датчиков (не строго выдержанные геометрические размеры, разброс параметров исходных материалов, неточность настройки и регулировки и т.п.); - инерционными свойствами датчика (изменения выходных величин запаздывают по отношению к соответствующим изменениям входной величины); - обратным воздействием датчика на медико-биологическую систему, что приводит к искажению информации об исследуемом параметре x.
В зависимости от носителя информации о входной величине, датчики подразделяются на электромеханические, электростатические, электромагнитные, электронные, термоэлектрические и т.д.
Различают два типа датчиков: генераторные и параметрические.
Генераторными называют датчики, в которых под воздействием входной величины генерируется разность потенциалов, ЭДС, ток. К параметрическим относятся датчики, в которых под воздействием входной величины изменяется какой-либо параметр (сопротивление, индуктивность, емкость и т.д.). Генераторные датчики В качестве генераторных датчиков рассмотрим термопару, пьезоэлектрический датчик и индукционный датчик. Термопара Термопары относятся к термоэлектрическим преобразователям. Термопара представляет собой замкнутую цепь из двух разнородных металлических проводников (рис.3).
Контакты металлов A и К (спаи) поддерживают при разных температурах. Один спай называют контрольным (К). Его температура Т К поддерживается постоянной при помощи термостата. Второй спай Т А (А) - рабочий. Он помещается в среду, температуру которой надо измерить. В цепь термопары включается измерительный прибор. Если температура рабочего спая Т А отличается от температуры контрольного спая Т К, то в цепи термопары возникает термоэлектродвижущая сила (ТЭДС), величина которой прямо пропорциональна разности температур рабочего и контрольного спаев и определяется соотношением ТЭДС = a(Т А - Т К), где a - удельная ТЭДС, показывающая, какая ТЭДС возникает в данной цепи при разности температур контактов в один градус. Измеряя ТЭДС, можно определить разность температур, а следовательно, и температуру рабочего контакта. Таким образом, термопара является датчиком температуры. Входной величиной такого датчика является разность температур, выходной - возникающая в термопаре электродвижущая сила. Пьезоэлектрические датчики Их работа основана на явлении прямого пьезоэффекта, который заключается в том, что на противоположных концах кристаллической пластинки возникают заряды различных знаков, если пластинку деформировать. Механическое напряжение преобразуется в разность потенциалов между ее концами. Пьезодатчик используют для измерения различных физических величин: механических напряжений, переменных сил, скоростей, ускорений, давления и т.д. Индукционные датчики Принцип их действия основан на явлении электромагнитной индукции. Примером такого датчика может быть система из постоянного магнита (или электромагнита) и подвижного замкнутого проводящего контура (подвижной катушки). При поступательном или вращательном движении катушки в магнитном поле в ней наводится ЭДС индукции, возникает индукционный ток, величина которого зависит от скорости движения катушки. Входной величиной такого датчика является скорость или ускорение поступательного или вращательного движения рамки, выходной - возникающая в рамке ЭДС индукции. Параметрические датчики Примерами могут служить емкостные, индуктивные, резистивные датчики. Емкостной датчик В качестве примера может быть использован, например, плоский конденсатор. Емкость C плоского конденсатора определяется соотношением где S - площадь обкладки конденсатора, d - расстояние между обкладками, e - диэлектрическая проницаемость вещества между обкладками. Если сместить относительно друг друга обкладки заряженного конденсатора, то изменится его электроемкость и, соответственно, изменится разность потенциалов между его обкладками. С помощью таких датчиков можно измерять механические перемещения, толщину и однородность диэлектрика и т.п. Индуктивный датчик
В простейшем варианте представлен на рис.4. Катушка 1 намотана на замкнутый сердечник 2. Якорь 3 может перемещаться относительно сердечника и замыкать последний. При перемещении якоря изменяется индуктивность катушки, это приводит к изменению индуктивного сопротивления цепи и, в конечном итоге, к изменению тока в цепи катушки. Входной величиной такого датчика является механическое перемещение якоря, выходной - ток в цепи катушки. Разновидностью индуктивных датчиков являются магнитоупругие датчики. Их работа основана на изменении магнитной проницаемости сердечника катушки, если сердечник деформировать - сжать, растянуть и т.п. Изменение магнитной проницаемости сердечника приводит к изменению индуктивности катушки. Входной величиной такого датчика является механическая деформация, механическое напряжение, выходной - сила тока в цепи катушки. Резистивные датчики В качестве таковых рассмотрим тензорезисторы (тензосопротивления). Тензорезисторы иначе называют тензодатчиками. Принцип действия тензодатчиков основан на тензоэффекте. Тензоэффект проявляется в том, что активное сопротивление проводника зависит от механической деформации: сжатия, растяжения, изгиба, кручения. Различают тензодатчики с линейным и объемным тензоэффектом. Датчики с линейным тензоэффектом изготовляют из тонкой проволоки (см. практическую часть). Сопротивление проволоки рассчитывают по формуле где r - удельное сопротивление проволоки, l - ее длина, S - площадь поперечного сечения. При деформации датчика одновременно изменяются длина l и поперечное сечение S, что приводит к изменению сопротивления и силы тока в цепи датчика. Датчики с линейным тензоэффектом используют для измерения механических перемещений, деформаций, механических напряжений и давления. Датчики с объемным тензоэффектом представляют собой столбики из вещества, сопротивление которого сильно изменяется в зависимости от давления окружающей среды. Применяют такие датчики в качестве манометров для измерения высоких и сверхвысоких давлений. В завершение этого раздела необходимо несколько слов сказать об электронныхдатчиках, которые в настоящее время получили широкое распространение. В них преобразование неэлектрической величины в электрическую основано на электронных процессах. К электронным датчикам относятся вакуумные фотоэлементы, в основе работы которых лежит внешний фотоэффект и полупроводниковые фотоэлементы, работающие на внутреннем фотоэффекте. Фотоэлектронные датчики используют для измерения светового потока, силы света, освещенности, для исследования прозрачности и мутности растворов в колориметрах и нефелометрах. С помощью фотоэлементов можно вести счет предметов, измерять механические перемещения, скорости, ускорения и т.д.
|
|||||||||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 1319; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.165.173 (0.009 с.) |