Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Перетворення програми Р в нову програму що містить вузьку і широку частину.Содержание книги
Поиск на нашем сайте
У цій секції ми покажемо техніку, яка дозволяє нам перетворювати програму у нові програми, що складається з двох частин, одна це виконання (також називається товста частина), а інша частина тільки синхронізація (тонку частину). У цій секції ми показали дві леми і три теореми, що доводять можливість таких перетворень 4.1 Програма Р’ як м-ідентична копія програми Р У цьому перетворенні ми конструюємо програму Р’, створюючи м копій програми Р Усе виконання в копії x має бути завершене перед тим, як копія x + 1 зможе початися. Це не вимагає ніякої додаткової синхронізації, поки не буде необхідності в зв'язуванні процесів з добре визначеними точками початку і кінця (подивіться Мал. 4). У лемі 1 ми показуємо, що це перетворення не змінює коефіцієнт разів завершення з оптимальним статичним розподілом, порівнянним з оптимальним динамічним розподілом. Лема 1: Діапазон часу завершення роботи при оптимальному часі завершення не розниться від переключення між програмами Р’ і Р Доказ:, Маючи м (м > 1) копій програми Р, ми множимо обидві кількості
Рис. 4 показує перетворення програми в копіях м цієї програми позначається як Р’, Програма Р (ліва частина в малюнку) складається з виконання і синхронізаційних сигналів
Рис 4. Перетворення програми Р м копій Р
Пізніше ми перетворимо ці м копій в двох частинах: одна частина з синхронізаційні сигнали тільки один з повним виконанням. Перед цим, ми показували інше перетворення, перетворення -продовження, де ми продовжуємо процеси. Продовження процесів Це перетворення істотне для спрощення у безлічі "більш погано працюючих" які ми називаємо «завершеними». Ми бачитимемо, що властивість опуклості перетворення (Теорема 1:) грає центральну роль. Ми перетворюємо програму Р в Р’ продовженням процесів. Тобто, ми пропонуємо кожного разу доки x, x > 0, з кожного процесу в програмі Р таким чином Δ x, що Δ(x ⁄ x) - те ж для усіх процесів. Програма Р’ потім перетворена в Р’’ таким же чином. Тобто, після перетворення кожного разу коли блок x + Δ x продовжено на Δ x. Кожну Роботу(x) замінює Робота (x + Δ x) для Р’ і константа Роботи (x + 2Δ x) для Р’’ , де Δ(x ⁄ x). Це перетворення не впливає на синхронізацію. В цьому випадку динамічного розподілу, коли вартість синхронізації дорівнює нулю після продовження, ми просто маємо: .
Ситуація для статичного розподілу відмінна від попередньої. Починаючи з вартості комунікації, яка в цьому випадку не нульова, відмінності після продовження не завжди зберігаються, тому що ми не продовжуємо синхронізацію. Мал. 5 демонструє перетворення. Для простоти зображення знаками ми позначаємо час Ts (P, A) статичного завершення замість Ts (P, A, k, t), і позначаємо довжину програми L minA = Ts (P, A). різницею між Р і Р’ позначаємо, як Δ L. Це означає, що довжина програми Р’ дорівнює L ′ = L + Δ L Програма Р’’ створюється так само, використовуючи те ж Δ x в Р’. Різниця між Р’ і Р’’ ми позначаємо, як Δ L ’. Потім довжина програми Р’’ буде L ″ =(L + Δ L)+ Δ L ′. Рис
Рис 5. Перетворення програми Р за допомогою пролонгації
Властивість опуклості, яка формулюється в Теоремі 2, витікає з Теореми 1 і заявляє, що Δ L ≤ Δ L ′. Ці теореми визначаються пізніше. Для того, щоб обговорювати ефект роздільного локального планування, ми розглянемо тільки один процес на процесор. Ми ослабимо це обмеження у кінці цього розділу. Спершу ми визначаємо деяку термінологію: Шляхом програми ми визначаємо підключену послідовність сегментів і синхронізації сигнали. Шлях починається завжди на початку програми. Довжиною шляху ми визначаємо час для усього виконання і сигналів синхронізації, які включаються у шлях. Найдовшим шляхом ми визначаємо шлях з максимальною довжиною. Критичним шляхом ми визначаємо щонайдовший шлях з мінімальним числом сигналів синхронізації. Отже коли ми маємо два щонайдовші шляхи, потім критичний шлях буде шляхом з менше стрілки. Для простоти ми використовуємо "стрілку" це скорочення для поняття «синхронізаційний синал» Мал. 6 показує програму з чотирма процесами на чотирьох комп'ютерах, що містять чотири синхронізаційні сигнали. Права частина малюнка показує ієрархічну структуру двох шляхів. шлях лівої сторони складається з трьох сегментів і двох стрілок, при праві один, це довше складається з чотирьох сегментів і трьох стрілок. Довший є звичайно критичний шлях. - Рис 6, Графічне відображення програми Р і її «шляхи», критичний шлях є найдовшим стр(P) = 3.
Можливо, що критичний шлях не має ніяких стрілок. У такому разі, критичний шлях складається тільки з одного процесу. Також можливо, що критичний шлях змінює свій шлях, коли ми просуваємося to P P ′ або від, to P ′ P ″ і в наслідок чого число стрілок може змінватись. Як згадуваолсь раніше ми завжди переймаємо на себе оптимальне локальне планування. Спершу ми показуємо, що для продовження число стрілок в критичному шляху не може зростати. Нехай стр(P) є числом стрілок в критичному шляху програми Р, і дозволяє стр(P ″) бути числом стрілок в критичному шляху програми Р’ (тобто Р після продовження). Лема 2:. стр(P) ≥ стр(P ′) Доказ: Припускають, що стр(P) = m,(m ≥ 0) і що в програмі Р є інший шлях, що складається із кількості стрілок М. Коли ми продовжуємо процеси, шлях з більшими стрілками обов'язково має менше виконання. Потім цей шлях зростає повільніше, ніж критичний шлях. Тому, шлях із більшою кількістью стрілок не може бути критичим. Отже: стр(P) ≥ стр(P ′).
Рис. 7 показує ієрархічну структуру перетворення із статичним розподілом. Програма Р складається з двох шляхів: перший з двома сегментами і одним сигналом синхронізації, і другий шлях з трьома сегментами і двома сигналами синхронізації. Другий шлях довший і це - критичний шлях. Впродовж перетворення перший шлях подовжується швидше і в наслідку це - критичний шлях в програмі P ″. Розглядаємо, що в програмі Р’ обидва шляхи рівні. В цьому випадку перший шлях з коротшими сигналами синхронізації є - критичним шляхом. Рис показує також: стр(P)≥стр(P ′) і Δ L ≤ Δ L ′.
Рис 7. Трансформація продовженням Теорема 1:. Δ L ≤ Δ L ′ Доказ: Нехай E 1 = y 1 + стр(E 1) ⋅ t буде довжиною шляху один, де y1 – сума довжин сегментів (виконання) в шляху один, і стр(E 1) - число стрілок де вартість комунікації = t. Нехай E 2 = y 2 + стр (E 2) ⋅ t буте відповідати довжині шляху два. До того ж, припустимо, що y 1 > y 2 і що шлях два є критичним тобто: E 1 < E 2
Нехай E 1′ = y 1(x + Δ x)⁄ x + стр(E 1) t і E 2′ = y 2(x + Δ x)⁄ x + стр(E 2) t шляхи після першого продовження. І нехай тоді E 1″ = y 1(x + 2Δ x)⁄ x + стр(E 1) t і E 2′ = y 2(x + 2Δ x)⁄ x + стр(E 2) t Будуть шляхами після другого продовження. Потім ми порівнюємо критичний шлях з будь-яким іншим шляхом протягом пролонгацій. Є три можливі альтернативи: (1) Критичний шлях не змінює свою траєкторію, тобто E 1 < E 2 і E 1' < E 2' і E 1'' < E 2'' Тоді: Δ L = E 2′ – E 2 Δ L ′= E 2″ – E 2′= E 2′ – E 2 = Δ L.
(2) критичний шлях змінює свій шлях після першого продовження Тобто E 1 < E 2 E 1' ≥ E 2', і E 1''> E 2'' тоді Δ L < Δ L ′ тому що шлях E 1 росте швидше, ніж E 2. (3) критичний шлях змінює свій шлях після другого продовження тобто E 1 < E 2 E 1' ≥ E 2',і E 1''> E 2'' а потім Δ L < Δ L ′, звичайно оскільки шлях E 1 росте швидше, ніж E 2. Тому, в усіх випадках ми маємо: Δ L ≤ Δ L ′.
Ми зараз беремо дві копії програми Р’. З попередньої секції, тому що ми знаємо що перетворення до м копій програми Р гарантує нам діапазон. Згідно з продовженням перетворення і Теоремою 1, ми маємо: Теорема 2: 2 L ′ ≤ L + L ″. Доказ: 2 L ′= L + Δ L + L +Δ L ≤ L +Δ L + L +Δ L ′= L +(L +Δ L +Δ L ′) = L + L ″. Це означає, що довжина двох копій Р’ (після перетворення Р) є меншою ніж відповідна сума довжин Р і Р’’. Це властивість опуклості перетворення продовження.
|
||
|
Последнее изменение этой страницы: 2016-06-22; просмотров: 397; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.214 (0.008 с.) |