Числовые характеристики случайных величин. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Числовые характеристики случайных величин.



Закон распределения случайных величин, представленный в той или иной форме, дает исчерпывающее описание случайной величины. Наиболее существенные особенности распределения в компактной форме описываются так называемыми числовыми характеристиками случайных величин. Они играют в теории вероятности огромную роль, с их помощью облегчается решение вероятностных задач. Рассмотрим наиболее часто встречающиеся числовые характеристики.

 

Характеристики положения.

 
 

 


Мат. Ожидание Мода Медиана

 

Важнейшая характеристика математическое ожидание, которая показывает среднее значение случайной величины.

Математическое ожидание величины Х обозначается М[X], или mx.

Для дискретных случайных величин математическое ожидание:

Сумма значений соответствующего значения на вероятность случайных величин.

 

Модой (Mod) случайной величины Х называют ее наиболее вероятное значение.

Для дискретной случайной величины. Для непрерывной случайной величины.

       
   
 
 

 

 


Mod=X3 Mod=X0

Одно-модальное распределение

 


Много модальное распределение

В общем случае Mod и математическое ожидание не

совпадают.

 

Медианой (Med) случайной величины Х называют такое значение, для которой вероятность того что P(X<Med)=P(X>Med). У любого распределения Med может быть только один.


Med разделяет площадь под кривой на 2 равные части. В случае одно-модального и симметричного распределения

mx=Mod=Med

 

Моменты.

Чаще всего на практике применяются моменты двух видов начальное и центральное.

Начальный момент. -го порядка дискретной случайной величины Х называется сумма вида:

Для непрерывной случайной величины Х начальным моментом порядка называется интеграл , очевидно, что математическое ожидание случайной величины есть первый начальный момент.

Пользуясь знаком (оператором) М, начальный момент -го порядка можно представить как мат. ожидание -ой степени некоторой случайной величины.

 

Центрированной случайной величиной соответственной случайной величины Х называют отклонение случайной величины Х от ее математического ожидания:

Математическое ожидание центрированной случайной величины равно 0.

Для дискретных случайных величин имеем:

 

 


Моменты центрированной случайной величины носят название Центральных моментов

 

Центральный момент порядка случайной величины Х называют математическим ожиданием -ой степени соответствующей центрированной случайной величины.

Для дискретных случайных величин:

Для непрерывных случайных величин:

 

Связь между центральными и начальными моментами различных порядков

Из всех моментов в качестве характеристики случайной величины чаще всего применяют первый момент (мат. ожидание) и второй центральный момент .

 

Второй центральный момент называют дисперсией случайной величины. Он имеет обозначение:

Согласно определению

Для дискретной случайной величины:

Для непрерывной случайной величины:

Дисперсия случайной величины есть характеристика рассеянности (разбросанности) случайных величин Х около ее математического ожидания.

Дисперсия означает рассеивание. Дисперсия имеет размерность квадрата случайной величины.

Для наглядной характеристики рассеивания удобнее использовать величину, my той, что и размерность случайной величины. С этой целью из дисперсии извлекают корень и получают величину, называемую - среднеквадратичным отклонением (СКО) случайной величины Х, при этом вводят обозначение:

Среднеквадратичное отклонение иногда называют "стандартом" случайной величины Х.

Итак:

 

Математическое ожидание mx и Dx (или СКО ) наиболее частые употребляемые характеристики случайных величин, так как они определяют наиболее важные черты распределения, его положения и степень разбросанности.

 

Вернуться к вопросам


Ответ на билет 8

 

 

Вернуться к вопросам


Ответ на билет 9

 

Равномерное распределение

Равномерная плотность распределения определяется следующим образом:

Функция распределения определяется:

 
 


 

Найдем числовые характеристики:

(математическое ожидание)

(медиана), Mod - не существует для данного распределения

(дисперсия), (среднеквадратичное отклонение)

 

Вернуться к вопросам


Ответ на билет 10

 

Закон распределения Пуасона

Рассмотрим дискретную случайную величину х, имеющую ряд распределения:

X X0=0 X1=1 Xm=m
P P0 P1 Pm

Говорят, что данное случайное распределение подчинено закону распределения Пуасона.

(k=m-1)

 

Вернуться к вопросам


Ответ на билет 11

 

Нормальный закон распределения (закон Гауса)

Главная особенность в том, что он является предельным законом, к которому приближаются другие распределения, при весьма часто встречающихся типичных условиях.

Нормальный закон распределения характеризуется плотностью вероятности вида:

 

 

Можно показать, что дисперсия

 

Вернуться к вопросам


Ответ на билет 12

 

 

Вернуться к вопросам


Ответ на билет 13

 



Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 866; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.155.148 (0.024 с.)