ТОП 10:

Теорема сложения вероятностей.



Вероятность двух не совместных событий равна сумме вероятностей этих событий.

P(A) P(B)

P(A+B)=P(A)+P(B)

S=S1+S2+…+Sn

P(S)=P(S1)+P(S2)+…+P(Sn)

Следствие: Если событие S1, S2, …, Sn образуют полную группу не совместных событий, то сумма их вероятностей равна 1.

Противоположными событиями называются два не совместных события, образующие полную группу

. (пример - монетка имеющая орел и орешко)

Если два события A и B совместны, то вероятность совместного появления двух событий вычисляется по формуле:

Условие независимости события А от события В: P(A|B)=P(A), то P(B|A)=P(B)

Условие зависимости события А от события В: P(A|B) P(A), P(B|A) P(B) (Если А не зависит от В, то и В не зависит от А - условие не зависимости условий взаимно).

Вероятность произведения двух событий равна произведению вероятности одного из событий на условную вероятность другого, вычисленную при условии, что событие первое имело место:

P(AB)=P(A)P(B|A), P(AB)=P(B)P(A|B)

Следствие: Вероятность произведения нескольких не зависимых событий равна произведению вероятностей этих событий. P(A1A2…An)=P(A1)P(A2)…P(An)

Пример: на монете выпадет орел 2 раза

S=AорAор S=P2(A)=(1/2)2=1/4

 

Вернуться к вопросам


Ответ на билет 3

 

Закон распределения случайных величин

Ряд и многоугольник распределений. Случайная величина - это величина, которая в результате опыта может принять то или иное значение не известное заранее какое.

Большие буквы - случайные величины. Малые буквы - их возможные решения.

Рассмотрим случайную дискретную величину Х с возможными значениями x1, x2, …, xn

В результате опыта :

Обозначим вероятность соответствующих событий через Pi

, так как рассматриваемые события образуют полную группу не совместных событий, то

Х полностью описана с вероятностной точки зрения, если мы зададим распределение вероятности pi(i=1,2…,n), то есть в точности указаны решения вероятности pi каждого события xi

Этим будет установлен закон случайной величины xi.

Законом распределения случайной величины называется всякое соотношение устанавливающее связь между возможными значениями случайных величин и соответствующими вероятностями.

Простейшей формой записи законов распределения является таблица:

 
 


X x1, x2, …, xn
P p1, p2, …, pn

 

 

Многоугольник и ряд распределения полностью характеризует случайную величину и является одной из форм законов распределения. (Для непрерывной случайной величины построить невозможно).

 

Вернуться к вопросам


Ответ на билет 4

 

Плотность и функция распределения.

Функция распределения непрерывной случайной величины (Х), задана выражением:

a) Найти коэффициент а

b) Найти плотность распределения F(x)

c) Найти вероятность попадания случайной величины на участок P(0,5<x<3)=?

d) Построить график функций

       
 
   
 


F(4)=1 -> a4=1, a=0,25

 
 


f(x)

- два способа решения.

 

Вернуться к вопросам


Ответ на билет 5

 

Функция распределения

Для непрерывной случайной величины Х вместо вероятности равенства Х=х используют вероятность Р(Х<х). F(x)=P(X<x)

F-функция распределения случайной величины х

F(x) -интегральный закон распределения или интегральная функция распределения.

F(x) -самая универсальная характеристика случайной величины, она существует для всех случайных величин как дискретных так и непрерывных.

Основные свойства функции распределения.

1. Функция распределения F(x) есть не убывающая функция своего аргумента, т.е. при x2>x1 F(x2)>=F(x1)

2. При функция распределения F(x)=0; F( )=0

3. При F(x)=1; F( )=1

 

 


Для дискретной случайной величины:

Функция распределения любой дискретной случайной

величины всегда есть разрывная ступенчатая функция,

скачки которых происходят в точках соответствующих

возможных значений случайных величин и равны

вероятностям этих значений. Сумма всех скачков

равна 1.

F(x) непрерывной случайной величины

Часто используют величины квантиль и -процентная точка

Квантиль - решение уравнения

- процентная точка определяется из уравнения

 

 

Вернуться к вопросам


Ответ на билет 6

 

Формула полной вероятности.

Пусть требуется определить вероятность некоторого события А, которое может произойти вместе с одним из событий H1, H2, …, Hn, образующие полную группу не совместных событий. Эти события назовем гипотезами. Докажем, что в этом случае вероятность событий:

Вероятность события А вычисляется как сумма произведений вероятностей каждой гипотезы на условную вероятность события при этой гипотезе.

применяем 2е теоремы:

-формула полной вероятности

 

Теорема гипотез (формула Байеса).

Пусть вероятность полной группы не совместных гипотез H1, H2, …, Hn известны и равны P(H1), P(H2), …, P(Hn). Событие А может появиться совместно с условной вероятностью P(A|Hi) (i=1,2,…,n).

Спрашивается, как следует изменить вероятности гипотез после проведения опытов в связи с появлением этого события. Иными словами, требуется найти условную вероятность P(Hi,A).

 

Формула Байеса:

 

 

Вернуться к вопросам


Ответ на билет 7

 







Последнее изменение этой страницы: 2016-04-25; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.209.80.87 (0.014 с.)