Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сумма событий и произведение событий.↑ Стр 1 из 4Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Ответ на билет 1
X – случайная величина. x – значение случайной величины.
- непрерывная случайная величина
Дискретная случайная величина – можно пересчитать. Практически не возможное событие, вероятность которого близка к нулю 0 (0,01; 0,1). Практически достоверное событие, вероятность которого близка к единице 1 (0,99; 0,9888).
Вернуться к вопросам Ответ на билет 2 Сумма событий и произведение событий. А,В,….,G - события Суммой событий называется некоторое событие S=A+B+….+G=A B …. G, состоящее в появлении хотя бы одного из этих событий. Пример: Допустим идет стрельба по мишени А1 - попадание при первом выстреле А2 - попадание при втором выстреле S=A1+A2 (хотя бы одно попадание)
Произведением некоторых событий называется событие, состоящее в совместном появлении всех этих событий. S=ABC…G= Пример: А1 - промах при первом выстреле А2 - промах при втором выстреле А3 - промах при третьем выстреле (не одного попадания)
Теорема сложения вероятностей. Вероятность двух не совместных событий равна сумме вероятностей этих событий. P(A) P(B) P(A+B)=P(A)+P(B) S=S1+S2+…+Sn P(S)=P(S1)+P(S2)+…+P(Sn) Следствие: Если событие S1, S2, …, Sn образуют полную группу не совместных событий, то сумма их вероятностей равна 1. Противоположными событиями называются два не совместных события, образующие полную группу . (пример - монетка имеющая орел и орешко) Если два события A и B совместны, то вероятность совместного появления двух событий вычисляется по формуле: Условие независимости события А от события В: P(A|B)=P(A), то P(B|A)=P(B) Условие зависимости события А от события В: P(A|B) P(A), P(B|A) P(B) (Если А не зависит от В, то и В не зависит от А - условие не зависимости условий взаимно). Вероятность произведения двух событий равна произведению вероятности одного из событий на условную вероятность другого, вычисленную при условии, что событие первое имело место: P(AB)=P(A)P(B|A), P(AB)=P(B)P(A|B) Следствие: Вероятность произведения нескольких не зависимых событий равна произведению вероятностей этих событий. P(A1A2…An)=P(A1)P(A2)…P(An) Пример: на монете выпадет орел 2 раза S=AорAор S=P2(A)=(1/2)2=1/4
Вернуться к вопросам
Закон распределения случайных величин Ряд и многоугольник распределений. Случайная величина - это величина, которая в результате опыта может принять то или иное значение не известное заранее какое. Большие буквы - случайные величины. Малые буквы - их возможные решения. Рассмотрим случайную дискретную величину Х с возможными значениями x1, x2, …, xn В результате опыта: Обозначим вероятность соответствующих событий через Pi , так как рассматриваемые события образуют полную группу не совместных событий, то Х полностью описана с вероятностной точки зрения, если мы зададим распределение вероятности pi(i=1,2…,n), то есть в точности указаны решения вероятности pi каждого события xi Этим будет установлен закон случайной величины xi. Законом распределения случайной величины называется всякое соотношение устанавливающее связь между возможными значениями случайных величин и соответствующими вероятностями. Простейшей формой записи законов распределения является таблица:
Многоугольник и ряд распределения полностью характеризует случайную величину и является одной из форм законов распределения. (Для непрерывной случайной величины построить невозможно).
Вернуться к вопросам
Плотность и функция распределения. Функция распределения непрерывной случайной величины (Х), задана выражением: a) Найти коэффициент а b) Найти плотность распределения F(x) c) Найти вероятность попадания случайной величины на участок P(0,5<x<3)=? d) Построить график функций F(4)=1 -> a4=1, a=0,25
- два способа решения.
Вернуться к вопросам
Функция распределения Для непрерывной случайной величины Х вместо вероятности равенства Х=х используют вероятность Р(Х<х). F(x)=P(X<x) F-функция распределения случайной величины х F(x) -интегральный закон распределения или интегральная функция распределения. F(x) -самая универсальная характеристика случайной величины, она существует для всех случайных величин как дискретных так и непрерывных. Формула полной вероятности. Пусть требуется определить вероятность некоторого события А, которое может произойти вместе с одним из событий H1, H2, …, Hn, образующие полную группу не совместных событий. Эти события назовем гипотезами. Докажем, что в этом случае вероятность событий: Вероятность события А вычисляется как сумма произведений вероятностей каждой гипотезы на условную вероятность события при этой гипотезе. применяем 2 е теоремы:
Теорема гипотез (формула Байеса). Пусть вероятность полной группы не совместных гипотез H1, H2, …, Hn известны и равны P(H1), P(H2), …, P(Hn). Событие А может появиться совместно с условной вероятностью P(A|Hi) (i=1,2,…,n). Спрашивается, как следует изменить вероятности гипотез после проведения опытов в связи с появлением этого события. Иными словами, требуется найти условную вероятность P(Hi,A).
Формула Байеса:
Вернуться к вопросам
Характеристики положения.
Мат. Ожидание Мода Медиана
Важнейшая характеристика математическое ожидание, которая показывает среднее значение случайной величины. Математическое ожидание величины Х обозначается М[X], или mx. Для дискретных случайных величин математическое ожидание: Сумма значений соответствующего значения на вероятность случайных величин.
Модой (Mod) случайной величины Х называют ее наиболее вероятное значение. Для дискретной случайной величины. Для непрерывной случайной величины.
Mod=X3 Mod=X0 Одно-модальное распределение
Много модальное распределение В общем случае Mod и математическое ожидание не совпадают.
Медианой (Med) случайной величины Х называют такое значение, для которой вероятность того что P(X<Med)=P(X>Med). У любого распределения Med может быть только один. Med разделяет площадь под кривой на 2 равные части. В случае одно-модального и симметричного распределения mx=Mod=Med
Моменты. Чаще всего на практике применяются моменты двух видов начальное и центральное. Начальный момент. -го порядка дискретной случайной величины Х называется сумма вида:
Для непрерывной случайной величины Х начальным моментом порядка называется интеграл , очевидно, что математическое ожидание случайной величины есть первый начальный момент. Пользуясь знаком (оператором) М, начальный момент -го порядка можно представить как мат. ожидание -ой степени некоторой случайной величины.
Центрированной случайной величиной соответственной случайной величины Х называют отклонение случайной величины Х от ее математического ожидания: Математическое ожидание центрированной случайной величины равно 0. Для дискретных случайных величин имеем:
Моменты центрированной случайной величины носят название Центральных моментов
Центральный момент порядка случайной величины Х называют математическим ожиданием -ой степени соответствующей центрированной случайной величины. Для дискретных случайных величин: Для непрерывных случайных величин:
Равномерное распределение Равномерная плотность распределения определяется следующим образом:
Функция распределения определяется:
Найдем числовые характеристики: (математическое ожидание) (медиана), Mod - не существует для данного распределения (дисперсия), (среднеквадратичное отклонение)
Вернуться к вопросам
Закон распределения Пуасона Рассмотрим дискретную случайную величину х, имеющую ряд распределения:
Говорят, что данное случайное распределение подчинено закону распределения Пуасона. (k=m-1)
Вернуться к вопросам
Нормальный закон распределения (закон Гауса) Главная особенность в том, что он является предельным законом, к которому приближаются другие распределения, при весьма часто встречающихся типичных условиях. Нормальный закон распределения характеризуется плотностью вероятности вида:
Можно показать, что дисперсия
Вернуться к вопросам
Вернуться к вопросам
Задача на схему случаев В урне 3 белых и 4 черных шара. Какова вероятность изъятия из урны трех черных шаров?
n - общее число возможных случаев изъятия 3 шаров из урны. m - число благоприятных случаев. (все три шара черные)
,
Вернуться к билетам.
Ответ на билет 1
X – случайная величина. x – значение случайной величины.
- непрерывная случайная величина
Дискретная случайная величина – можно пересчитать. Практически не возможное событие, вероятность которого близка к нулю 0 (0,01; 0,1). Практически достоверное событие, вероятность которого близка к единице 1 (0,99; 0,9888).
Вернуться к вопросам Ответ на билет 2 Сумма событий и произведение событий. А,В,….,G - события Суммой событий называется некоторое событие S=A+B+….+G=A B …. G, состоящее в появлении хотя бы одного из этих событий. Пример: Допустим идет стрельба по мишени А1 - попадание при первом выстреле А2 - попадание при втором выстреле S=A1+A2 (хотя бы одно попадание)
Произведением некоторых событий называется событие, состоящее в совместном появлении всех этих событий. S=ABC…G= Пример: А1 - промах при первом выстреле А2 - промах при втором выстреле А3 - промах при третьем выстреле (не одного попадания)
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-25; просмотров: 710; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.80.42 (0.009 с.) |