Применение систем эконометрических уравнений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Применение систем эконометрических уравнений

Поиск

Наиболее широко системы одновременных уравнений используются при построении макроэкономических моделей экономики страны. В большинстве случаев это мультипликаторные модели кейнсианского типа. Статическая модель Кейнса народного хозяйства в самом простом виде следующая:

где С – личное потребление;

y – национальный доход в постоянных ценах;

I – инвестиции в постоянных ценах.

 

В силу наличия тождества в модели (второе уравнение системы) Он характеризует предельную склонность к потреблению. Если из каждой дополнительной тысячи рублей дохода на потребление расходуется в среднем 650 рублей и 350 рублей инвестируется. Если то , и на потребление расходуются не только доходы, но и сбережения. Параметр a Кейнс истолковывал как прирост потребления за счет других факторов.

Структурный коэффициент b используется для расчета мультипликаторов. По данной функции потребления можно определить два мультипликатора – инвестиционный мультипликатор потребления Mc и национального дохода My:

т. е. при .

.

Это означает, что дополнительные вложения 1 тыс. руб. приведут при прочих равных условиях к дополнительному увеличению потребления на 1,857 тыс. руб.

т. е. при

,

т. е. дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,857 тыс. руб.

Эта модель точно идентифицируема, и для получения применяется КМНК. Строится система приведенных уравнений:

в которой а параметры и являются мультипликаторами, т. е. и . Для проверки подставим балансовое равенство в первое уравнение структурной модели:

Аналогично поступим и со вторым уравнением структурной модели:

Таким образом, приведенная форма содержит мультипликаторы, интерпретируемые как коэффициенты множественной регрессии, отвечающие на вопрос, на сколько единиц изменится значение эндогенной переменной, если экзогенная изменится на 1 единицу. Это делает модель удобной для прогнозирования.

В более поздних исследованиях статическая модель Кейнса включала уже не только функцию потребления, но и функцию сбережений:

где сбережения.

Здесь три эндогенные переменные – C, r, y и одна экзогенная – I. Система идентифицируема: в первом уравнении Н= 2 и D= 2, во втором Н= 1, D= 0; рассматривается как предопределенная переменная.

Наряду со статическими широкое распространение получили динамические модели экономики. Они содержат в правой части лаговые переменные, а также учитывают тенденцию. Например, модель Кейнса экономики США 1950-1960 гг. в упрощенном варианте:

 

 

чистые трансферты в пользу администрации;

кап. вложения;

правительственные расходы;

заработная плата в период ;

прибыль;

прибыль в период ;

общий доход.

Модель содержит 5 эндогенных переменных – (в левой части системы) и (зависимая переменная, определяемая по первому тождеству), три экзогенные переменные – и две лаговые предопределенные переменные и Данная модель сверхидентифицируема и решается ДМНК. Для прогнозных целей используется приведенная форма модели:

 

 

Здесь мультипликаторами являются коэффициенты при экзогенных переменных. Они отражают влияние экзогенной переменной на эндогенную переменную.

Система одновременных уравнений нашла применение в исследованиях спроса и предложения. Линейная модель спроса и предложения имеет вид:

Здесь 3 эндогенные переменные: и При этом, если и представляют собой эндогенные переменные, исходя из структуры самой системы, то является эндогенной по экономическому содержанию (цена зависит от спроса и предложения), а также в результате наличия тождества Приравняем уравнения, получим:

,

.

Модель не содержит экзогенной переменной. Однако, чтобы модель имела статистическое решение и можно было убедиться в ее справедливости, в модель вводятся экзогенные переменные.

Например, модель вида:

где доход на душу населения; климатические условия (при спросе и предложении зерна).

Переменные и экзогенные. Введя их в модель, получаем идентифицированную структурную модель, где можно применить КМНК.

Контрольные вопросы

 

1. Наибольшее распространение в эконометрических исследованиях получили системы независимых уравнений, системы рекурсивных уравнений или системы взаимозависимых уравнений?

2. Эндогенные переменные – это…

3. Экзогенные переменные – это…

4. Какой МНК применяется для определения параметров точно идентифицируемой модели?

5. Кокой МНК применяется для определения параметров сверхидентифицируемой модели?

6. Какой МНК применяется для определения параметров неидентифицируемой модели?

 


5. ВРЕМЕННЫЕ РЯДЫ В ЭКОНОМЕТРИЧЕСКИХ
ИССЛЕДОВАНИЯХ



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 535; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.175.167 (0.007 с.)