Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основы современной эконометрикиСодержание книги
Поиск на нашем сайте
Определение эконометрики Сначала необходимо выяснить, что обычно понимают под эконометрикой. Затем обсудим современное состояние эконометрики как научно-практической дисциплины. Эконометрика – это наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Эконометрика – это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и экономических измерений, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией. Эконометрика как научная дисциплина зародилась и получила развитие на основе слияния экономической теории, математической экономики и экономической и математической статистики. По словам Р. Фриша: «… каждая из трех отправных точек – статистика, экономическая теория и математика - необходимое, но недостаточное условие для понимания количественных соотношений в современной экономической жизни. Это единство всех трех составляющих. Таким образом, эконометрика – это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов. Предметом эконометрики являются экономические явления. Но, в отличие от экономической теории, эконометрика делает упор на количественные, а не на качественные аспекты этих явлений. В эконометрике широко используется аппарат математической статистики, особенно при установлении связей между экономическими показателями. В то же время в экономике невозможно проведение управляемого эксперимента, и эконометристы используют свои собственные приемы анализа, которые в математической статистике не встречаются. Эконометрическое моделирование реальных социально-экономических процессов и систем обычно преследует два типа конечных прикладных целей (или одну из них): 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;
2) имитацию различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование). При постановке задач эконометрического моделирования следует определить их иерархический уровень и профиль. Анализируемые задачи могут относиться к макро- (страна, межстрановой анализ), мезо- (регионы внутри страны) и микро- (предприятия, фирмы, семьи) уровням и быть направленными на решение вопросов различного профиля инвестиционной, финансовой или социальной политики, ценообразования, распределительных отношений и т. п. Основные задачи эконометрики: 1. Построение эконометрических моделей, т. е. представление экономических моделей в математической форме, удобной для проведения эмпирического анализа (спецификация модели). 2. Оценка параметров построенной модели, делающих выбранную модель наиболее адекватной реальным данным (параметризация). 3. Проверка качества найденных параметров модели и самой модели в целом (верификация). 4. Использование построенных моделей для объяснения поведения экономических показателей, прогнозирования и предсказания, а также для осмысленного проведения экономической политики. Этапы эконометрического моделирования: 1. Постановочный этап: определение конечных целей моделирования, набора факторов и показателей. 2. Априорный этап: предмодельный анализ экономической сущности изучаемого явления. 3. Параметризация: собственно моделирование, т. е. выбор общего вида модели, состава и формы входящих в нее связей. 4. Информационный этап: сбор статистической информации. 5. Идентификация модели: статистический анализ модели и оценивание неизвестных параметров модели. 6. Верификация модели: сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
Эконометрические методы - это прежде всего методы статистического анализа конкретных экономических данных, естественно, с помощью компьютеров. В нашей стране они пока сравнительно мало известны, хотя именно у нас наиболее мощная научная школа в области основы эконометрики – теории вероятностей. В настоящей главе дается общее представление о структуре и возможностях эконометрики, включая ее последние достижения.
Эконометрический метод складывался в преодолении следующих трудностей, искажающих результаты применения классических статистических методов (сущность новых терминов будет раскрыта в дальнейшем): · асимметричности связей; · мультиколлинеарности связей; · эффекта гетероскедастичности; · автокорреляции; · ложной корреляции; · наличия лагов. Статистические (эконометрические) методы используются в зарубежных и отечественных экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других статистических методов дает заметный экономический эффект. Например, в США - не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества. В 1988 г. затраты на статистический анализ данных в нашей стране оценивались в 2 миллиарда рублей ежегодно[1]. Следовательно, объем отечественного «рынка статистических и эконометрических услуг» был на порядок меньше, чем в США, что совпадает с оценками и по другим показателям, например, по числу специалистов. Эконометрика (как учебный предмет) призвана вооружить экономиста, менеджера, инженера современным эконометрическим инструментарием, разработанным за последние 50-70 лет. Не владея эконометрикой, отечественный специалист - менеджер и инженер - оказывается неконкурентоспособным по сравнению с зарубежным. Во многих странах мира: Японии и США, Франции и Швейцарии, Перу и Ботсване и др. - статистическим методам обучают в средней школе, ЮНЕСКО постоянно проводят конференции по вопросам такого обучения[2]. Обсудим сложившуюся ситуацию, уделив основное внимание статистическим методам в экономических и технико-экономических исследованиях, т. е. эконометрике.
Эконометрика = экономика + метрика Действительно, термин «эконометрика» состоит из двух частей: «эконо-» - от «экономика» и «-метрика» - от «измерение». Эконометрика (в другом русско- и англоязычном варианте названия этой дисциплины - эконометрия) входит в обширное семейство дисциплин, посвященных измерениям и применению статистических методов в различных областях науки и практики. К этому семейству относятся, в частности, биометрика (или биометрия), технометрика, наукометрия, психометрика, хемометрика (наука об измерениях и применении статистических методов в химии). Особняком стоит социометрия - этот термин закрепился за статистическими методами анализа взаимоотношений в малых группах, т. е. за небольшой частью такой дисциплины, как статистический анализ в социологии. Эконометрика посвящена развитию и применению статистических методов в конкретной области науки и практики - в экономике, прежде всего, в теории и практике менеджмента. В мировой науке эконометрика занимает достойное место. Нобелевские премии по экономике получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо. В 2000 г. к ним добавились - Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе:
· Journal of Econometrics (Швеция), · Econometric Reviews (США), · Econometrica (США), · Sankhya. Indian Journal of Statistics. Ser.D. Quantitative Economics (Индия), · Publications Econometriques (Франция). Рассмотрим современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях. Структура эконометрики В эконометрике, как дисциплине на стыке экономики, включая менеджмент, и статистического анализа, естественно выделить три вида научной и прикладной деятельности (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы): · (а) разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных; · (б) разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики; · (в) применение эконометрических методов и моделей для статистического анализа конкретных экономических данных. Кратко рассмотрим три только что выделенных вида научной и прикладной деятельности. По мере движения от первого к последнему виду научной и прикладной деятельности в эконометрике сужается широта области применения конкретного эконометрического метода, но при этом повышается его значение для анализа конкретной экономической ситуации. Если работам вида (а) соответствуют научные результаты, значимость которых оценивается по общеэконометрическим критериям, то для работ вида (в) основное - успешное решение задач конкретной области экономики. Работы вида (б) занимают промежуточное положение, поскольку, с одной стороны, теоретическое изучение эконометрических моделей может быть весьма сложным и математизированным, с дру- Прикладная статистика - другая область знаний, чем математическая статистика. Это четко проявляется и при преподавании. Курс математической статистики состоит в основном из доказательств теорем, как и соответствующие учебные пособия. В курсах прикладной статистики и эконометрики основное - методология анализа данных и алгоритмы расчетов, а теоремы приводятся как обоснования этих алгоритмов, доказательства же, как правило, опускаются (их можно найти в научной литературе). Внутренняя структура статистики как науки была выявлена и обоснована при создании в 1990 г. Всесоюзной статистической ассоциации[3].
Прикладная статистика - методическая дисциплина, являющаяся центром статистики. При применении к конкретным областям знаний и отраслям народного хозяйства получаем научно-практические дисциплины типа «статистика в промышленности», «статистика в медицине» и др. С этой точки зрения эконометрика - это «статистические методы в экономике». Математическая статистика играет роль математического фундамента для прикладной статистики. К настоящему времени, очевидно, четко выраженное размежевание этих двух научных направлений. Математическая статистика исходит из сформулированных в 1930-50 гг. постановок математических задач, происхождение которых связано с анализом статистических данных. В настоящее время исследования по математической статистике посвящены обобщению и дальнейшему математическому изучению этих задач. Термин «прикладная статистика» используется с 1960-х годов. Прикладная статистика нацелена на решение реальных задач. Поэтому в ней возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими методами, т. е. путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий. Статистические данные собираются и анализируются с незапамятных времен, современная математическая статистика как наука была создана, по общему мнению специалистов, сравнительно недавно - в первой половине ХХ в. Именно тогда были разработаны основные идеи и получены результаты, излагаемые ныне в учебных курсах математической статистики. После чего специалисты по математической статистике занялись внутриматематическими проблемами, а для теоретического обслуживания проблем практического анализа статистических данных стала формироваться новая дисциплина - прикладная статистика. В настоящее время статистическая обработка данных проводится, как правило, с помощью соответствующих программных продуктов. Разрыв между математической и прикладной статистикой проявляется, в частности, в том, что большинство методов, включенных в статистические пакеты программ (например, в заслуженные Statgraphics и SPSS или в более новую систему Statistica), даже не упоминается в учебниках по математической статистике. В результате специалист по математической статистике оказывается зачастую беспомощным при обработке реальных данных. Ситуация с внедрением современных статистических (эконометрических) методов на предприятиях и в организациях различных отраслей противоречива. К сожалению, при развале отечественной промышленности в 1990-е годы больше всего пострадали структуры, наиболее нуждающиеся в эконометрических методах - службы качества, надежности, центральные заводские лаборатории и др. Но толчок к развитию получили службы маркетинга и сбыта, сертификации, прогнозирования, инноваций и инвестиций, которым также полезны различные эконометрические методы, в частности, методы экспертных оценок.
|
|||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 1447; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.127.59 (0.013 с.) |