Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Внутренний тепло- и массообмен.Содержание книги
Поиск на нашем сайте
В процессе сушки изменяются температура и влагосодержание поверхности материала, вызывая в материале распространение теплоты (теплоперенос) и движение потоков влаги и воздуха (массоперенос). Тепло- и массоперенос в материале определяются градиентами температур, влагосодержаний и давлений. Если температура в двух точках материала различна, то разность температур (Δt=t1-t2) называется температурным перепадом, а удельный перепад, т.е. перепад температур на единице протяженности теплового потока, - температурным градиентом. Удельный перепад влагосодержаний в материале называют градиентом влагосодержаний а удельный перепад давлений - градиентом давлений
Различные исследования позволяют сделать вывод о том, что наиболее интенсивный перенос влаги в материале происходит при совпадении градиентов влагосодержаний, температур и давлений. При этом градиенты не оказывают взаимного тормозящего воздействия на потоки влаги, что является важнейшим условием для организации интенсивного сушильного процесса.
Периоды процесса сушки. Для знакомства с динамикой изменения температур и влагосодержаний в материале в процессе сушки представим, что пористый материал с начальным влагосодержанием и 0 и температурой t0 помещен в установку с непрерывно меняющимся сушильным агентом и постоянной температурой tc. Рис. 12.1. Схема направлений градиентов и частотных потоков массы при сушке В первый период (I) сушки — период прогрева (τ1) - происходит прогрев материала и t°в установке повышается от t0 до tII. Температура на поверхности материала значительно выше (Δt1); поток массы qt (рис. 12.1), вызванный градиентом температур, направлен к центру изделия. Градиент температур оказывает тормозящее действие на передвижение влаги к поверхности, что отражается в уравнении плотности потока для периода I: где qu - плотности потока массы, кг/(м2·ч); q1 - удельный перенос влаги, кг/(м2·ч); qp - удельный поток влаги за счет градиента давления, кг/(м2·ч). Интенсивность испарения влаги в течение периода τ1 возрастает. А влажность материала снижается незначительно. Период II называется периодом постоянной скорости сушки и характеризуется постоянной температурой материала как на поверхности, так и в центре его, равной температуре мокрого термометра: Внешняя поверхность покрыта слоем влаги и скорость сушки определяется условиями внешней диффузии пара через пограничный слой в окружающую газовую среду. Градиенты температур отсутствуют; передвижение влаги к поверхности зависит от градиентов влагосодержаний и давлений: Сушка происходит с постоянной интенсивностью, приближающейся к интенсивности испарения влаги со свободной поверхности. Процесс заканчивается, когда свободная влага полностью испарится, влагосодержание снизится до критического UK, а влагосодержание на поверхности - до гигроскопического Ue, соответствующего влажности материала при длительном воздействии на него насыщенной парами окружающей среды. Период /// сушки материала называется периодом падающей скорости сушки. Основная влага удалена из материала в предыдущем периоде, поэтому скорость сушки зависит, в основном, от скорости перемещения влаги внутри материала по капиллярам и порам. Теплота в период III расходуется не только на испарение влаги, а также на нагрев материала. Температура поверхности приближается к температуре сушильного агента tc; за счет теплопроводности материала прогревается весь его объем, температура центра растет. В результате вновь возникает перепад температур на участке поверхность-центр, а поток массы qt, вызванный градиентом температур, направлен внутрь материала. Удаление влаги продолжается, однако интенсивность испарения уменьшается и по достижении материалом равновесий влажности становится равной нулю. Уравнение плотности потока массы для периода падающей скорости сушки (III) записывается в следующем виде: Напряжения и деформации в процессе сушки. При удалении влаги частицы материала сближаются. В результате размеры изделия сокращаются, и происходит определенная усадка материала, зависящая от его структуры и вида связи влаги. В период / и /// температура материала по толщине изделия различна, в результате чего возникает неравномерное расширение различных слоев: где α1 - коэффициент линейного расширения. При анализе напряженных состояний необходимо отметить, что напряжения, возникающие под влиянием градиентов влагосодержаний и температур, имеют противоположные знаки, и уменьшая друг друга, снижают напряженное состояние материала. Однако усадка, вызываемая испарением влаги, во много раз превышает температурное расширение материала, и поэтому скорость испарения влаги оказывает основное влияние на деформативное изменение его структуры. Перепады давлений также могут быть причиной нарушения структуры материала при сушке.
Классификация процессов сушки. а) Сушка с рециркуляцией При обработке изделий по мягким температурным и влажностным режимам применяют сушку с использованием отработанного сушильного агента, или сушку с рециркуляцией. Рис. 12.2. Сушка с рециркуляцией: 1 — смесительная камера; 2 - подающий вентилятор; 3 — калорифер; 4 - сушильная установка; 5 — отсасывающий вентилятор. На приведенной схеме (рис. 12.2) наружный воздух с параметрами точки А и отработанный сушильный агент с параметрами точки С в смесительной камере 1 смешиваются. Смесь с параметрами точки А' подается с помощью вентилятора 2 в калорифер 3, а затем в сушильную установку 4. Проходя через калорифер, смесь нагревается до параметров точки В', а в сушильной установке увлажняется, отбирая влагу из материала. При реализации процесса сушки с рециркуляцией значительно снижаются температуры нагрева воздуха в калориферах, однако увеличиваются расходы за счет установки дополнительных вентиляторов и систем. б) Сушка с подогревом в сушильной камере В этом варианте сушильного процесса, как и в сушке с рециркуляцией, подача сушильного агента с высокой температурой отрицательно воздействует на качество материала, что вынуждает снижать температуру на входе в установку. В данном варианте дополнительная теплота подается непосредственно в сушильную установку (рис. 12.3). Рис. 12/3.Сушка с подогревом в сушильной камере: 1 - калорифер; 2 - сушильная установка, 3 - вентилятор. Наружный воздух (точка А) нагревается в калорифере 1 до параметров точки В1 а затем подается в сушилку 2, где в ходе сушки с помощью установленных нагревательных приборов вырабатывается дополнительная теплота. в) Многозонная сушка с промежуточным ступенчатым подогревом и рециркуляцией в настоящее время получает широкое распространение. Такой вид сушки позволяет в материале или изделиях снизить разность потенциалов, уменьшить напряженное состояние, приблизить процесс сушки к естественному. Сушильная камера разделена на 3 зоны (рис. 12.4). Рис. 12.4. Сушка многозонная с промежуточным подогревом В зоне I наружный воздух смешивается с находящимся в установке сушильным агентом и подогревается нагревательным прибором, получая количество теплоты qt; аналогичные процессы происходят в зонах II и III. г) Сушка дымовыми газами При сушке строительных материалов и изделий, к которым не предъявляются повышенные требования по чистоте поверхности (песок, глина, щебень), широко используют продукты сгорания топлива, получаемые в специальных топках или отработанные в других тепловых установках (котельных, печных). На схеме (рис. 12.5) дымовые газы, выходящие из топки 1 или отработавшие в установке 2, подаются в камеру 3, где смешиваются с наружным воздухом (т. А); сюда же могут быть поданы рециркуляционные газы. Вентиляторами газовоздушная смесь подается в сушилку 4 и отсасывается из нее. Этот вариант сушильного процесса применяют при сушке теплоизоляционных изделий, гипсовых и керамических камней. Рис. 12.5. Сушка дымовыми газами: 1 - топка; 2 - установка для забора отработанных газов; 3 - камера смешивания; 4 - сушильная камера. д) Основной вариант сушильного процесса Вентилятор 1 (рис. 12.6), забирая воздух из окружающей среды с параметрами, характеризуемыми точкой А, подает его в калорифер 2, где он нагревается до параметров, характеризуемых точкой В, превращаясь при этом в сушильный агент с высокими свойствами. Затем воздух вентилятором 4 просасывается через сушильную установку 3, отбирая влагу из материала, увлажняясь и изменяя свои параметры от значений, определяемых точкой В до значений, определяемых точкой С. При этом сушка может происходить при постоянном теплосодержании влажного воздуха, а также при подаче дополнительного количества теплоты в сушильную установку или при потере ее. Рис. 12.6. Схема сушильной установки: 1 — дутьевой вентилятор; 2 — калорифер; 3 — сушильная камера; 4 вытяжной вентилятор.
Режимы сушки. Особенности процессов сушки строительных материалов и изделий. Эффективные режимы сушки должны обеспечивать высокую интенсивность сушильного процесса, сохраняя при этом качественные характеристики материала. Мягкие режимы отличаются большой длительностью процесса и невысокими температурами обработки, а жесткие - повышенной температурой и короткими сроками. Для материала режим сушки определяется его напряженным состоянием, вызванным перепадом влагосодержаний между центром материала или изделия и поверхностью (Uц - Un). По А.В. Лыкову, напряженное состояние материала по критерию трещинообразования: где Uo - среднее начальное влагосодержание материала; U -среднее влагосодержание в данный период времени. Для периода постоянной скорости сушки, когда выдерживается постоянство температур по всему объему материала, основой расчета является массообменный критерий Кирпичева: откуда может быть определена плотность потока влаги: где α т - коэффициент потенциалопроводности, м2/ч; ρ0 - плотность сухого материала, кг/м3; R - линейный размер тела, м. Однако рассчитывать режим сушки аналитическими методами можно только в простейших конкретных случаях, для которых определены контакты и критерии тепло- и массообмена. Как правило, оптимальный режим сушки для каждого материала устанавливают опытным путем.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 727; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.237.140 (0.009 с.) |