Частные производные функций двух переменных. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Частные производные функций двух переменных.



Рассмотрим функцию двух переменных z = f(x, y).

Частной производной функции двух переменных z = f(x, y) по х в точке (х, у) называется предел , если он существует. Частная производная есть обычная производная от функции f(x,y), рассматриваемой как функция только от переменной х при фиксированном у.

Аналогично определяется частная производная по у в точке (х,у):

.

Если у функции существует частная производная снова по переменной х, то ее называют частной производной второго порядка от функции f(x,y) по переменной х и обозначают . Таким образом, .

Аналогично для переменной у: .

Если существует частная производная от функции по переменной у, то эту производную называют смешанной частной производной второго порядка от функции z = f(x, y) и обозначают .

В курсе высшей математики доказывается теорема о том, что если функция двух переменных определена вместе со своими частными производными в окрестности некоторой точки, причем смешанные частные производные непрерывны в этой точке, то в этом случае результат дифференцирования не зависит от порядка дифференцирования, т. е. .

ПРОИЗВОДНАЯ ПО НАПРАВЛЕНИЮ

Рассмотрим функцию двух переменных z = f(x, y). Если эта функция дифференцируема в точке (х,у), то для нее существует производная по направлению любого единичного вектора ` n0 = (Cosa, Cosb), выражаемая формулой ,

где a и b - углы, которые вектор ` n0 составляет с осями х и у.

Если же необходимо найти производную по направлению произвольного вектора ` n = a`i + в`j, то его необходимо сначала пронормировать и найти направляющие косинусы по формулам а потом воспользоваться приведенной выше формулой.

ГРАДИЕНТ ФУНКЦИИ

Градиентом функции z = f(x, y) в точке М(х0, у0) называется вектор grad z, координаты которого равны частным производным функции z = f(x, y), вычисленным в точке М(х0, у0)

.

ЗАДАЧА № 9

Найти частные производные функции z = f(x,y):

ЗАДАЧА № 10

Найти градиент и производную по направлению

 

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

При изучении дифференцированного исчисления решалась следующая задача: дана функция F(x), найти ее производную F¢(x) (в дальнейшем производную F¢(x) будем обозначать f(x)). Интегральное исчисление решает задачу обратную: для непрерывной функции f(x) найти такую функцию F(x), производная которой была бы тождественно равна функции f(x). Функция F(x) называется первообразной, f(x) - подынтегральной. Ясно, что если F¢(x) = f(x), то и [F¢(x) + C]¢ = f(x). Здесь С - произвольная постоянная величина.

Определение:

Неопределенным интегралом называется функция F(x) + C, производная которой равна подынтегральной функции f(x), т.е.

= F(x) + C, если [F(x) + C]¢ = f(x).

Подынтегральное выражение f(x)dx есть дифференциал для всех первообразных, т.е. d[F(x) + C] = f(x)dx.

Из определения следует, что процесс нахождения неопределенного интеграла сводится к нахождению первообразной данной функции.

Вообще, используя таблицу производных, можно составить таблицу основных интегралов:

1. 9.
2. 10.
2¢. 11.
3. 12.
3¢. 13.
4. 14.
5. 15.
6. 16.
7. 17.
8. 18.

 

ОСНОВНЫЕ СВОЙСТВА НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА

1. , т.е. знаки d и ò, стоящие перед некоторой функцией, друг друга уничтожают. Так .

2. , т.е. постоянный множитель можно выносить за знаки интеграла.

3. , т.е. неопределенный интеграл от суммы некоторых функций равен сумме интегралов от этих функций.

ЗАДАЧА № 11

Найти неопределенный интеграл .

=

МЕТОД ПОДСТАНОВКИ

Метод заключается в том, что вместо переменной x вводят новую переменную, например t. Так, если положить х = j(t), то

Получаемый интеграл должен быть значительно проще данного. В противном случае следует искать другую форму введения новой переменной. Часто переменную t вводят так: t = j(x), а dt = j¢(x)dx. Это удобно, если данное подынтегральное выражение содержит дифференциал j¢(x)dx.

ЗАДАЧА № 12

Найти неопределенный интеграл .

=

ЗАДАЧА № 13

Найти неопределенный интеграл .

.

ЗАДАЧА № 14

Найти неопределенный интеграл .

=

ИНТЕГРИРОВАНИЕ ПО ЧАСТЯМ

Идея метода состоит в том, что подынтегральное выражение f(x)dx нужно представить в виде произведения U*dV, где U(x) и V(x) - дифференцируемые функции и воспользоваться формулой .

При этом вновь полученный интеграл должен быть проще данного.

ЗАДАЧА № 15

Найти неопределенный интеграл .

=

ЗАДАЧА № 16

Найти неопределенный интеграл .

=



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 4897; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.224.124.217 (0.03 с.)