Числовые характеристики непрерывных случайных величин.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Числовые характеристики непрерывных случайных величин.



 

Пусть непрерывная случайная величина Х задана функцией распределения f(x). Допустим, что все возможные значения случайной величины принадлежат отрезку [a,b].

 

Математическим ожиданиемнепрерывной случайной величины Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интеграл

.

Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

.

При этом, конечно, предполагается, что несобственный интеграл сходится.

Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.

.

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

.

 

Средним квадратичным отклонениемназывается квадратный корень из дисперсии.

.

 

МодойМ0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным.

Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным.

Медианой MD случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам.

Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Начальным моментомпорядка k случайной величины Х называется математическое ожидание величины Хk.

 

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Начальный момент первого порядка равен математическому ожиданию.

 

Центральным моментомпорядка k случайной величины Х называется математическое ожидание величины

 

 

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.

Пример. В урне 6 белых и 4 черных шара. Из нее пять раз подряд извлекают шар, причем каждый раз вынутый шар возвращают обратно и шары перемешивают. Приняв за случайную величину Х число извлеченных белых шаров, составить закон распределения этой величины, определить ее математическое ожидание и дисперсию.

 

Т.к. шары в каждом опыте возвращаются обратно и перемешиваются, то испытания можно считать независимыми (результат предыдущего опыта не влияет на вероятность появления или непоявления события в другом опыте).

Таким образом, вероятность появления белого шара в каждом опыте постоянна и равна

Таким образом, в результате пяти последовательных испытаний белый шар может не появиться вовсе, появиться один раз, два, три, четыре или пять раз.

Для составления закона распределения надо найти вероятности каждого из этих событий.

1) Белый шар не появился вовсе:

2) Белый шар появился один раз:

3) Белый шар появиться два раза: .

4) Белый шар появиться три раза:

5) Белый шар появиться четыре раза:

6) Белый шар появился пять раз:

 

Получаем следующий закон распределения случайной величины Х.

 

х
х2
р(х) 0,0102 0,0768 0,2304 0,3456 0,2592 0,0778

 

 

При решении практических задач зачастую точно найти закон распределения случайной величины довольно сложно. Однако, все происходящие процессы, связанные со случайными величинами, можно разделить на несколько типов, каждому из которых можно поставить в соответствие какой – либо закон распределения.

Выше были рассмотрены некоторые типы распределений дискретной случайной величины такие как биноминальное распределение и распределение Пуассона.

Рассмотрим теперь некоторые типы законов распределения для непрерывной случайной величины.

 

 

Равномерное распределение.

Определение. Непрерывная случайная величина имеет равномерноераспределение на отрезке [a, b], если на этом отрезке плотность распределения случайной величины постоянна, а вне его равна нулю.

Постоянная величина С может быть определена из условия равенства единице площади, ограниченной кривой распределения.

 

f(x)

 

 

 

0 a b x

Получаем .

Найдем функцию распределения F(x) на отрезке [a,b].

F(x)

 

 


 

 

0 a b x

 

Для того, чтобы случайная величина подчинялась закону равномерного распределения необходимо, чтобы ее значения лежали внутри некоторого определенного интервала, и внутри этого интервала значения этой случайной величины были бы равновероятны.

Определим математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения.

Вероятность попадания случайной величины в заданный интервал:

 

 



Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.219.62 (0.011 с.)