Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Показательное распределение.

Поиск

Определение. Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью

где l - положительное число.

 

Найдем закон распределения.

 

Графики функции распределения и плотности распределения:

f(x) F(x)

 

l 1

 

0 x 0 x

 

Найдем математическое ожидание случайной величины, подчиненной показательному распределению.

Результат получен с использованием того факта, что

Для нахождения дисперсии найдем величину М(Х2).

Дважды интегрируя по частям, аналогично рассмотренному случаю, получим:

Тогда

 

Итого:

 

Видно, что в случае показательного распределения математическое ожидание и среднее квадратическое отклонение равны.

Также легко определить и вероятность попадания случайной величины, подчиненной показательному закону распределения, в заданный интервал.

Показательное распределение широко используется в теории надежности.

 

Допустим, некоторое устройство начинает работать в момент времени t0=0, а через какое– то время t происходит отказ устройства.

Обозначим Т непрерывную случайную величину – длительность безотказной работы устройства.

Таким образом, функция распределения F(t) = P(T<t) определяет вероятность отказа за время длительностью t.

Вероятность противоположного события (безотказная работа в течение времени t) равна R(t) = P(T>t) = 1 – F(t).

 

Нормальный закон распределения.

Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

 

 

Нормальный закон распределения также называется законом Гаусса.

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

Найдем функцию распределения F(x).

 

 

График плотности нормального распределения называется нормальной кривой или кривой Гаусса.

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х, значение функции стремится к нулю.

4) Найдем экстремум функции.

Т.к. при y’ > 0 при x < m и y’ < 0 при x > m, то в точке х = т функция имеет максимум, равный .

5) Функция является симметричной относительно прямой х = а, т.к. разность (х – а) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно .

 

Построим график функции плотности распределения.

 

 

Построены графики при т =0 и трех возможных значениях среднего квадратичного отклонения s = 1, s = 2 и s = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается..

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

 

При а = 0 и s = 1 кривая называется нормированной. Уравнение нормированной кривой:

 

 

 

Функция Лапласа.

 

Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Тогда

Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция

,

 

которая называется функцией Лапласа или интегралом вероятностей.

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

Ниже показан график функции Лапласа.

 

 

 

Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(- х) = - Ф(х);

3) Ф(¥) = 1.

Функцию Лапласа также называют функцией ошибок и обозначают erf x.

 

Еще используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

 

Ниже показан график нормированной функции Лапласа.

 

 

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм.

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:

 

Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа:

 

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм.

Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.

 

Пример. Поезд состоит из 100 вагонов. Масса каждого вагона – случайная величина, распределенная по нормальному закону с математическим ожидание а = 65 т и средним квадратичным отклонением s = 0,9 т. Локомотив может везти состав массой не более 6600 т, в противном случае необходимо прицеплять второй локомотив. Найти вероятность того, что второй локомотив не потребуется.

Второй локомотив не потребуется, если отклонение массы состава от ожидаемого (100×65 = 6500) не превосходит 6600 – 6500 = 100 т.

Т.к. масса каждого вагона имеет нормальное распределение, то и масса всего состава тоже будет распределена нормально.

Получаем:

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 548; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.223.255 (0.006 с.)