Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение равнодействующей произвольной плоской системы силСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Произвольную плоскую систему сил можно заменить одной силой – главным вектором – и одной парой сил, момент которой называется главным моментом (Е. М. Никитин, § 25). Замену любой плоской системы сил главным вектором и главным моментом необходимо рассматривать как предварительную операцию перед определением равнодействующей силы или равнодействующего момента (пары сил), если система не имеет равнодействующей. Главный вектор по модулю и направлению соответствует геометрической сумме всех данных сил и приложен в произвольно выбранной точке – в центре приведения. Главный момент равен алгебраической сумме моментов всех данных сил относительно точки, в которой приложен главный вектор. Задачу определения главного вектора и главного момента можно решать как графическим методом, так и аналитическим. Графический метод здесь не рассматривается, а аналитически решение задачи выполняется так: 1) модуль главного вектора: Rгл = sqrt(Xгл2 + Yгл2), 2) направление главного вектора, т. е. углы φx или φy, образуемые Rгл с осями координат, можно определить при помощи тригонометрических соотношений (см. § 4, п. 7); 3) знак и числовое значение главного момента определяются по формуле В частном случае, как это показано в задачах 60 и 61, плоскую систему сил можно привести либо только к одной силе – равнодействующей, либо только к одной паре сил – равнодействующему моменту. Замена главного вектора Rгл и главного момента Mгл равнодействующей R (Е. М. Никитин, § 27) представляет операцию, обратную приведению силы к точке. Приводя силу к любой точке, не расположенной по линии ее действия, получаем силу и пару (Е. М. Никитин, § 25). Теперь необходимо от силы и пары перейти к одной эквивалентной им силе. На рис. 74 условно показана последовательность операции замены главных вектора и момента – равнодействующей: 1) на рис. 74, а изображены найденные Rгл и Mглнекоторой плоской системы сил; 2) на рис. 74, б главный момент Mгл представлен в виде пары (R1, R) (причем, R=R1=Rгл), расположенной так, что одна из сил R1 пары уравновешивает главный вектор Rгл; 3) уравновешенную систему сил можно убрать и вместо Rгл и Mгл останется одна сила R – равнодействующая данной системы сил (рис. 74, в). Таким образом, если плоская система сил приводится к главному вектору и главному моменту, то ее равнодействующая R численно и по направлению соответствует главному вектору: R=Rгл. Но линия действия равнодействующей ВС расположена от центра приведения О на расстоянии Задача 60. К точкам A, B, C и D, образующим прямоугольник со сторонами АВ=80 см и ВС=180 см, приложены пять сил, как показано на рис. 75, а. Определить... Задача 61. К вершинам квадрата ABCD приложены шесть сил, как показано на рис. 76, а. Сторона квадрата 1 м, модули сил Р1=Р4=100... Задача 62. К четырем точкам тела, образующим квадрат ABCD со стороной 1,2 м приложены силы Р1=5 кн, Р2=2 кн, Р3=3 кн... Теорема Вариньона Из формулы, определяющей расстояние от центра приведения до линии действия равнодействующей, Теорема Вариньона находит широкое применение при решении задач по статике, в частности во всех тех задачах, где рассматривается равновесие рычага (задачи с 70 по 74). При помощи теоремы Вариньона очень просто определяется равнодействующая какого угодно числа параллельных сил Р1, Р2, Р3,..., Рi(рис. 80). Известно, что модуль равнодействующей любой плоской системы сил равен модулю главного вектора: Но если в данном случае расположить оси проекций так, как показано на рис. 80, одну ось – перпендикулярно к силам, а другую – параллельно им, то Таким образом, модуль равнодействующей, параллельной системы сил равен абсолютному значению алгебраической суммы проекций сил на ось, параллельную этим силам. Так как XR=0, то вектор равнодействующей R направлен параллельно составляющим силам. Сторона, в какую направлен R, определяется по знаку ∑ Yi. Если у алгебраической суммы проекций получается знак «плюс», то равнодействующая направлена в сторону положительного направления оси; если получается знак «минус», то равнодействующая направлена противоположно положительному направлению оси. Определив модуль и направление равнодействующей, по теореме Вариньона находим расстояние OA, на котором расположена KL – линия действия R от произвольно выбранного центра моментов O. Задача 65. Определить равнодействующую двух параллельных сил Р1 и Р2, направленных в одну сторону (рис. 81, а), если Р1=12... Задача 66. Найти равнодействующую двух параллельных сил Р1 и Р2, направленных в разные стороны, если Р1=12 кн и Р2=60... Задача 67. К концам прямолинейной однородной планки длиной 1,6 м и весом 5 н прикреплены два груза (рис. 83): слева – груз Р1=20 н,... Задача 68. Балансир AB, на который действуют пять горизонтально направленных параллельных сил (рис. 84), должен находиться в равновесии в вертикальном... Задачи, приведенные ниже, решаются при помощи так называемого условия равновесия рычага, непосредственно вытекающего из теоремы Вариньона (Е. М. Никитин, § 28). Рычагом можно назвать любое тело, поворачивающееся либо вокруг закрепленной оси, либо около линии контакта, образующейся при свободном опирании на другое тело. Находясь под действием сил, рычаг уравновешен лишь в том случае, если линия действия равнодействующей пересекает ось или линию опоры. Причем если опорой рычага АВ служат закрепленная ось (неподвижный шарнир), то линия действия равнодействующей может быть направлена к рычагу под любым углом α (рис. 85, а). Если же рычаг АВ свободно опирается на идеально гладкую опору (рис. 85, б), то линия действия равнодействующей должна быть перпендикулярна к опорной поверхности. В любом из этих случаев равновесие возникает потому, что система сил, действующих на рычаг, уравновешивается реакцией опоры Rур, численно равной равнодействующей. А так как момент равнодействующей относительно опоры равен нулю, то из выражения теоремы Вариньона следует уравнение Задача 70. Масса неоднородного стержня составляет 4,5 кг. Для определения положения центра тяжести стержня его левый конец положен на гладкую опору, а правый... Задача 71. Какова должна быть масса однородной доски (рис. 87, а), чтобы, опираясь в точке В на гладкую опору, она с положенными на нее грузами m1=100... Задача 72. Предохранительная заслонка открывается в тот момент, когда давление в резервуаре превышает внешнее атмосферное на p=150 кн/м2. Заслонка... Задача 73. На рис. 89, а изображен коленчатый рычаг ABC, к короткому колену которого при помощи нити прикреплен груз массой m1=50 кг, а...
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 1300; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.28.90 (0.007 с.) |