Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Равновесие с учетом сил тренияСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Задачи, приведенные в этом параграфе, отличаются от предыдущих тем, что в них рассматривается равновесие тел, имеющих, кроме идеальных, еще и реальные связи, т. е. связи с трением (Е. М. Никитин, § 34, 35 и 36). При свободном опирании тела на поверхность идеальной связи реакция такой связи Rи.с.(рис. 117, а) направлена перпендикулярно к ее поверхности, т. е. по нормали n к этой поверхности. Если же тело опирается на поверхность реальной связи (в отличие от идеальных связей реальные связи условимся отмечать двойной штриховкой), то ее реакция Rр.с. (рис. 117, б) в зависимости от нагрузок, приложенных к телу, отклонится от нормали n к поверхности связи на некоторый угол φ. Поясним это общее положение следующим примером. Наклонный брус (рис. 118, а), вес которого G, опирается в двух точках А и В соответственно на вертикальную и горизонтальную поверхности идеальных связей. Этот брус не может находиться в равновесии, потому что три силы – вес бруса G и реакции RA и RB – расположены так, что не выполняется необходимое условие равновесия трех непараллельных сил; их линии действия не пересекаются в одной точке. Чтобы брус, показанный на рис. 118, а, находился в равновесии, необходимо наложить еще одну связь, например, удержать брус шнуром или упереть в выступ на горизонтальной плоскости (обе возможные связи показаны пунктиром). Теперь представим, что в точке В брус опирается не на идеально гладкую, а на шероховатую (реальную) поверхность (рис 118, б). В этом случае брус может находиться в равновесии без дополнительной связи (шнура или упорной планки). Значит три силы – вес G и реакции опор RA и RB – образуют уравновешенную систему. Равновесие трех сил, действующих на брус, возможно потому, что реакция RB реальной связи отклоняется на некоторый угол φ от нормали к поверхности связи и линии действия всех трех сил пересекаются в точке О. Если реакцию RB реальной связи разложим на две составляющие, направленные вдоль поверхности и перпендикулярно к ней (это разложение показано на рис. 118, а справа), то получим силу NB – нормальную составляющую RB, численно равную нормальному давлению, производимому концом бруса на опору, и силу F – касательную составляющую реакции RB, которая называется силой трения. При увеличении угла α, характеризующего наклон бруса относительно горизонтальной поверхности, угол φ уменьшается, а вместе с ним уменьшается и сила трения, но брус сохраняет равновесие. Если же уменьшать угол α, то угол φ, характеризующий отклонение реакции RB от нормали, увеличивается, а вместе с ним увеличивается и сила трения (рис. 118, в). При некотором наклоне бруса, определенном для данной пары соприкасающихся в точке В тел (например, для деревянного бруса, опирающегося о деревянный пол), брус скользит. Это означает, что сила трения, достигая предельного значения, больше увеличиваться не может. При этом реакция отклоняется также до предельного значения φ=φ0 и при дальнейшем уменьшении угла α линия действия реакции RB уже не попадает в точку пересечения сил G и RA. Угол φ0, соответствующий Fmax – максимальному значению силы трения, называется углом трения. Числовое значение угла трения зависит от материала соприкасающихся тел и от состояния их поверхностей. Для случая предельного равновесия (грань между покоем и движением; § 36 в учебнике Е. М. Никитина) между силой трения и углом трения имеем такую зависимость: Постоянное для данной пары соприкасающихся тел значение tg φ0=f называется коэффициентом трения при покое. Таким образом, При решении задач необходимо учитывать, что сила трения направлена всегда в сторону, противоположную той, при которой точка может скользить по идеальной поверхности. Если в число реакций связей, обеспечивающих равновесие тела, входит сила трения, то такое состояние равновесия называется самоторможением (условие самоторможения тела в общей форме изложено в конце § 36 учебника Е. М. Никитина). Во всех приведенных ниже задачах рассмотрены различные случаи самоторможения (равновесия при наличии силы трения) и условия, при которых возможно самоторможение. Задача 89. Тело А массой 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок Б (рис. 119,... Задача 90. При каком минимальном коэффициенте трения между полом и лестницей последняя может находиться в равновесии, опираясь верхним концом о гладкую... Задача 91. В месте соприкосновения пола и лестницы в предыдущей задаче коэффициент трения f=0,4. Сможет ли человек, масса которого 70 кг, подняться по лестнице... Задача 92. При каких значениях угла α, образуемого с гладкой вертикальной стеной, лестница, опирающаяся нижним концом о шероховатый горизонтальный... Задача 94. Цилиндр с горизонтальной площадкой наверху (рис. 123, а), находясь в двух кольцевых направляющих, скользит вниз, так как между поверхностью... Задача 95. Тело А поставлено на негладкую пластину BC, которую можно поворачивать около шарнира В. Коэффициент трения f между телом А и пластиной BC известен... Сочлененные системы Сочлененной называется система нескольких тел, соединенных друг с другом при помощи внутренних связей: простого опирания, стержней или нитей (цепей), шарниров. При решении некоторых задач с сочлененными системами равновесие каждого тела системы рассматривают отдельно. При этом в месте сочленения тел возникают две силы, одна из которых приложена к одному телу, а другая – ко второму телу. Эти силы равны по модулю, направлены вдоль одной прямой, но в противоположные стороны (закон равенства действия и противодействия). На рис. 126 показаны силы взаимодействия, возникающие между телами А и В: PAB – действие тела А на тело В и PBA – действие тела В на тело А. Если, например, тело А служит опорой для В (связью), то PAB – реакция связи, приложенная к телу B, а PBA – сила давления (нагрузка), приложенная к телу А. На рис. 127 показаны силы, возникающие при взаимодействии тел A и B не непосредственно друг с другом, а через стержень. Если допустить, что тело А действует на В через стержень силой TAB, то тогда со стороны тела В возникнет сила TBA. В задачах, как правило, рассматривают только эти две силы, приложенные к телам А и В (рис. 127, а). На рис. 127, б показаны силы, приложенные только к стержню, т. е. показаны действия на стержень тел А и В. Если два тела А и В связаны друг с другом при помощи так называемого внутреннего шарнира (рис. 128), то направление сил взаимодействия заранее неизвестно. Поэтому каждая из сил взаимодействия между телами (силы RAB и RBA – предположительно показаны на рис. 128 штриховыми векторами) заменяются составляющими XAB, YAB и XBA, YBA. Причем для этих векторов выполняются следующие равенства: Задача 97. Балка АВ, имея в точке А шарнирное крепление, опирается в точке В на балку CD (рис. 129, а), которая удерживается в равновесии стержнем... Задача 98. Балка АВ жестко заделана у точки А и нагружена по всей длине равномерно распределенной нагрузкой интенсивностью q=8 кн/м (рис. 130, а)... При решении задач, в которых сочленение тел произведено при помощи промежуточного шарнира, целесообразно сначала составить уравнения равновесия для всей системы, а затем добавить к ним уравнение моментов сил относительно промежуточного шарнира для одного из тел сочлененной системы. Покажем это на примере следующей задачи. Задача 99. Балки 1 и 2 шарниром С соединенные между собой, шарнирно прикреплены к неподвижным опорам в точках А и В (рис. 131, а). Длина балок одинакова:... Задача 100. На наклонных плоскостях АС и ВС помещены два тела 1 и 2, связанные нитью, которая перекинута через блок D (рис. 132, а), f1 –...
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 953; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.78.64 (0.01 с.) |