![]()
Заглавная страница
Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь ![]() Мы поможем в написании ваших работ! КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Мы поможем в написании ваших работ! ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Равновесие тела при наличии трения качения.
Рассмотрим цилиндр (каток), покоящийся на горизонтальной плоскости, когда на него действует горизонтальная активная сила S;кроме нее, действует сила тяжести Р, а также нормальная реакция N и сила трения Т (рис. 6.10, а). Как показывает опыт, при достаточно малой величине силы S цилиндр остается в покое. Но этот факт нельзя объяснить, если удовлетвориться введением сил, изображенных на рис. 6.10, а. Согласно этой схеме равновесие невозможно, так как главный момент всех сил, действующих на цилиндр Mcz: = — Sr, отличен от нуля и одно из условий равновесия не выполняется.
Этот момент называется моментом трения качения. Составим уравнения равновесия цилиндра: S-T=0, N-P=0, -Sr+Mt=0 (6-12) Первые два, уравнения дают T=S, N = P, а из третьего уравнения можно найти МТ. Затем из (6.11) определяем расстояние между точками С и С1: h=Sr/P (6.13) Как видно, с увеличением модуля активной силы S растет расстояние h. Но это расстояние связано с площадью поверхности контакта и, следовательно, не может неограниченно увеличиваться. Это значит, что наступит такое состояние, когда увеличение силы S приведет к нарушению равновесия. Обозначим максимально возможную величину h буквой δ (см. рис. 6.10, б). Экспериментально установлено, что величина δ пропорциональна радиусу цилиндра и различна для разных материалов. Следовательно, если имеет место равновесие, то выполняется условие h≤δ (6.14) Величина δ называется коэффициентом трения качения; она имеет размерность длины. Условие (6.14) можно также записать в виде Mт≤δN(6.15) или, учитывая (6.12), S≤δN/r (6.15) Очевидно, что максимальный момент трения качения Mтmax = 8N пропорционален силе нормального давления. В справочных таблицах приводится отношение коэффициента трения качения к радиусу цилиндра (К = 8/г) для различных материалов Чистый сдвиг
При деформации элемента, ограниченного площадками чистого сдвига, квадрат превращается в ромб. d — абсолютный сдвиг, g » δ/а — относительный сдвиг или угол сдвига. Закон Гука при сдвиге:γ=τ/G или τ=Gγ. G — модуль сдвига или модуль упругости второго рода [МПа] — постоянная материала, характеризующая способность сопротивляться деформациям при сдвиге.G=E/2(1+µ) (Е — модуль упругости, m— коэффициент Пуассона). Потенциальная энергия при сдвиге: U=δQ/V=Q2a/2GF. Удельная потенциальная энергия деформации при сдвиге: u=U/V=Q2a/2GFaF ,где V=а×F — объем элемента. Учитывая закон Гука, u=τ2/2G. Вся потенциальная энергия при чистом сдвиге расходуется только на изменение формы, изменение объема при деформации сдвига равно нулю. напряженность τ=P/ℓδ τ =Mвн/2πR2δ σα= τ ABsinα+ τ BCcosα σ τ α= τ ABcosα- τ BCsinα AB=AC cos α, BC=AC sin α. Отсюда следует, что: σα= τ sin2α τ α= τ cos2α
15. Центртяжести твердого тела – точка, неизменно связанная с этим телом, через которую проходит линия действия равнодействующей сил тяжести частиц тела при любом положении тела в пространстве. При этом поле тяжести считается однородным, т.е. силы тяжести частиц тела параллельны друг другу и сохраняют постоянную величину при любых поворотах тела. Координаты центра тяжести:
Статический момент площади плоской фигуры – сумма произведений элементарных площадей, входящих в состав площади фигуры, на алгебраические значения расстояний до некоторой оси. Sx=åyi×DFi= F×yc; Sy=åxi×DFi= F×xc. Вспомогательные теоремы для определения положения центра тяжести: Т.1. Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси. Т.2. Если однородное тело имеет плоскость симметрии, то его центр тяжести находится в этой плоскости. Т.3. Объем тела вращения, полученного вращением плоской фигуры вокруг оси, лежащей в плоскости фигуры, но не пересекающей ее, равен произведению площади фигуры на длину окружности, описанной ее центром тяжести, V=2pxcF.
Определяя положение центра тяжести плоской фигуры с вырезанной из нее частью, можно считать площадь этой части отрицательной и тогда: 24.Теорема о сложении скоростей:
25.Теорема о сложении ускорений (теорема Кориолиса):
3) 4) получаем:
23.Мгновенный центр ускорений– точка (Q) плоской фигуры, ускорение которой в данный момент времени равно нулю. Для его построения из точки А откладываем под углом 20.Движение твердого тела. При сложении двух поступательных движений результирующее движение также является поступательным и скорость результирующего движения равна сумме скоростей составляющих движений. Сложение вращений тв. тела вокруг пересекающихся осей. Ось вращения, положение которой в пространстве изменяется со временем назыв. мгновенной осью вращения тела. Вектор угловой скорости – скользящий вектор, направленный вдоль мгновенной оси вращения. Абсолютная угловая скорость тела = геометрической сумме скоростей составляющих вращений – правило параллелограмма угловых скоростей.
27.Теорема об изменении количества движения матер. точки. 28. Теорема об изменении момента количества движения матер. точки.
29.Работа силы. Мощность. Элементарная работа dA = Ftds, Ft – проекция силы на касательную к траектории, направленная в сторону перемещения, или dA = Fdscosa. Если a – острый, то dA>0, тупой – <0, a=90o: dA=0. dA=
Теорема о работе силы: Работа равнодействующей силы равна алгебраической сумме работ составляющих сил на том же перемещении А=А1+А2+…+Аn. Работа силы тяжести: Работа силы упругости: Работа силы трения: если сила трения const, то Работа силы тяготения. Сила притяжения (тяготения): Мощность – величина, определяющая работу в единицу времени, = 1000 Вт, 1л.с.(лошадиная сила) = 75 кгс×м/с = 736 Вт].
30.Теорема об изменении кинетической энергии точки. В диффер-ной форме: Силовое поле – область, в каждой точке которой на помещенную в ней матер.точку действует сила, однозначно определенная по величине и направлению в любой момент времени, т.е. должно быть известна 1) Работа сил стац. поля зависит в общем случае от начального М1 и конечного М2 положений и траектории, но не зависит от закона движения матер. точки. 2) Имеет место равенство А2,1= – А1,2. Для нестационарных полей эти свойства на выполняются. Примеры: поле силы тяжести, электростатическое поле, поле силы упругости. Стационарные силовые поля, работа сил которых не зависит от траектории (пути) движения матер. точки и определяется только ее начальным и конечным положениями назыв. потенциальными (консервативными).
|
||
Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.239.192.241 (0.016 с.) |